Liver Transplantation for Monogenic Metabolic Diseases Involvingthe Kidney

Main Article Content

Maurizio Salvadori
Aris Tsalouchos

Keywords

atypical hemolytic uremic syndrome, glycogen storage disease, monogenic metabolic diseases, organic acidurias, primary hyperoxaluria

Abstract

Several metabolic monogenic diseases may be cured by liver transplantation alone (LTA) or by combined liver–kidney transplantation (CLKT) when the metabolic disease has caused end-stage renal disease. Liver transplantation may be regarded as a substitute for an injured liver or as supplying a tissue that may replace a mutant protein. Two groups of diseases should be distinguished. In the first group, the kidney tissue may be severely damaged while the liver tissue is almost normal. In this group, renal transplantation is recommended according to the degree of renal damage and liver transplantation is essential as a genetic therapy for correcting the metabolic disorder. In the second group, the liver parenchymal damage is severe. In this group, liver transplantation is essential to avoid liver failure. LTA may also avoid the progression of the renal disease; otherwise a CLKT is needed. In this review, we describe monogenic metabolic diseases involving the kidney that may have beneficial effects from LTA or CLKT. We also highlight the limitations of such procedures and the choice of alternative medical conservative treatments.

Abstract 1879 | PDF Downloads 462 HTML Downloads 1977 XML Downloads 117

References

1. Fagiuoli S, Daina E, D’Antiga L, Colledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013 Sep;59(3):595–612. http://dx.doi.org/10.1016/j.jhep.2013.04.004
2. Milani A, Zaccaria R. Combined liver and kidney transplantation. Open Transplant J. 2011;5:63–6. http://dx.doi.org/10.2174/1874418401105010063
3. Lachmann RH. Enzyme replacement therapy for lysosomal storage diseases. Curr Opin Pediatr. 2011 Dec;23(6):588–93. http://dx.doi.org/10.1097/MOP.0b013e32834c20d9
4. Fischer A, Cavazzana-Calvo M. Gene therapy of inherited diseases. Lancet. 2008 Jun;371(9629):2044–7. http://dx.doi.org/10.1016/S0140-6736(08)60874-0
5. Chava SP, Singh B, Pal S, Dhawan A, Heaton ND. Indications for combined liver and kidney transplantation in children. Pediatr Transplant. 2009 Sep;13(6):661–9. http://dx.doi.org/10.1111/j.1399-3046.2008.01046.x
6. Strobele B, Loveland J, Britz R, Gottlich E, Welthagen A, Botha J. Combined paediatric liver-kidney transplantation: Analysis of our experience and literature review. S Afr Med J. 2013 Oct;103(12):925–9. http://dx.doi.org/10.7196/samj.7304
7. Kasahara M, Sakamoto S, Horikawa R, Koji U, Mizuta K, Shinkai M. et al. Living donor liver transplantation for pediatric patients with metabolic disorders: The Japanese multicenter registry. Pediatr Transplant. 2014 Feb;18(1):6–15. http://dx.doi.org/10.1111/petr.12196
8. Nadim MK, Sung RS, Davis CL, Andreoni KA, Biggins SW, Danovitch GM, et al. Simultaneous liver-kidney transplantation summit: Current state and future directions. Am J Transplant. 2012 Nov;12(11):2901–8. http://dx.doi.org/10.1111/j.1600-6143.2012.04190.x
9. Davis CL, Feng S, Sung R, Wong F, Goodrich NP, Melton LB, et al. Simultaneous liver-kidney transplantation: Evaluation to decision making. Am J Transplant. 2007 Jul;7(7):1702–9. http://dx.doi.org/10.1111/j.1600-6143.2007.01856.x
10. Eason JD, Gonwa TA, Davis CL, Sung RS, Gerber D, Bloom RD. Proceedings of Consensus Conference on Simultaneous Liver Kidney Transplantation (SLK). Am J Transplant. 2008 Nov;8(11):2243–51. http://dx.doi.org/10.1111/j.1600-6143.2008.02416.x
11. Bacchetta J, Mekahli D, Rivet C, Demède D, Leclerc AL. Pediatric combined liver-kidney transplantation: A 2015 update. Curr Opin Organ Transplant. 2015 Oct;20(5):543–9. http://dx.doi.org/10.1097/MOT.0000000000000225
12. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012 Jun 12;8(8):467–75. http://dx.doi.org/10.1038/nrneph.2012.113
13. Lieske JC, Monico CG, Holmes WS, Bergstralh EJ, Slezak JM, Rohlinger AL, et al. International registry for primary hyperoxaluria. Am J Nephrol. 2005 May–Jun; 25(3):290–6. http://dx.doi.org/10.1159/000086360
14. Mandrile G, van Woerden CS, Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton SA. OxalEuropeConsortium Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 2014 Dec;86(6):1197–204. http://dx.doi.org/10.1038/ki.2014.222
15. Danpure CJ. Molecular aetiology of primary hyperoxaluria type 1. Nephron Exp Nephrol. 2004;98(2):e39–44. http://dx.doi.org/10.1159/000080254
16. Danpure CJ, Lumb MJ, Birdsey GM, Zhang X. Alanine: glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease. Biochim Biophys Acta. 2003 Apr;1647(1–2):70–5. http://dx.doi.org/10.1016/S1570-9639(03)00055-4
17. Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003 Dec;22(6):497. http://dx.doi.org/10.1002/humu.9200
18. Milliner DS, Wilson DM, Smith LH. Phenotypic expression of primary hyperoxaluria: Comparative features of types I and II. Kidney Int. 2001 Jan;59(1):31–6. http://dx.doi.org/10.1046/j.1523-1755.2001.00462.x
19. Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010 Sep;87(3):392–9. http://dx.doi.org/10.1016/j.ajhg.2010.07.023
20. Williams EL, Bockenhauer D, van’t Hoff WG, Johri N, Laing C, Sinha MD, et al. The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transplant. 2012 Aug;27(8):3191–5. http://dx.doi.org/10.1093/ndt/gfs039
21. Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009 Jun;75(12):1264–71. http://dx.doi.org/10.1038/ki.2009.32
22. Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol. 2001 Sep;12(9):1986–93.
23. Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med. 1994 Dec;331(23):1553–8. http://dx.doi.org/10.1056/NEJM199412083312304
24. Monico CG, Rossetti S, Olson JB, Milliner DS. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005 May;67(5):1704–9. http://dx.doi.org/10.1111/j.1523-1755.2005.00267.x
25. Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, et al. Oxalobacter formigenes: A potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006 Oct;70(7):1305–11. http://dx.doi.org/10.1038/sj.ki.5001707
26. Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO. Primary hyperoxaluria type 1: Still challenging! Pediatr Nephrol. 2006 Aug;21(8):1075–81. http://dx.doi.org/10.1007/s00467-006-0124-4
27. Cochat P, Fargue S, Harambat J. Primary hyperoxaluria type 1: Strategy for organ transplantation. Curr Opin Organ Transplant. 2010 Oct;15(5):590–3. http://dx.doi.org/10.1097/MOT.0b013e32833e35f5
28. Scheinman JI. Liver transplantation in oxalosis prior to advanced chronic kidney disease. Pediatr Nephrol. 2010 Nov;25(11):2217–22. http://dx.doi.org/10.1007/s00467-010-1594-y
29. Brinkert F, Ganschow R, Helmke K, Harps E, Fischer L, Nashan B, et al. Transplantation procedures in children with primary hyperoxaluria type 1: Outcome and longitudinal growth. Transplantation. 2009 May;87(9):1415–21. http://dx.doi.org/10.1097/TP.0b013e3181a27939
30. Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10(11):2493–501. http://dx.doi.org/10.1111/j.1600-6143.2010.03271.x
31. Compagnon P, Metzler P, Samuel D, Camus C, Niaudet P, Durrbach A, et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: The French experience. Liver Transplant. 2014 Dec;20(12):1475–85. http://dx.doi.org/10.1002/lt.24009
32. Naderi G, Latif A, Tabassomi F, Esfahani ST. Failure of isolated kidney transplantation in a pediatric patient with primary hyperoxaluria type 2. Pediatr Transplant. 2014 May;18(3): E69–73. http://dx.doi.org/10.1111/petr.12240
33. Filler G, Hoppe B. Combined liver-kidney transplantation for hyperoxaluria type II? Pediatr Transplant. 2014 May;18(3):237–9. http://dx.doi.org/10.1111/petr.12243
34. Cha D, Concepcion K, Gallo A, Concepcion W. Combined liver kidney transplantation in pediatrics: Indications, special considerations, and outcomes. Clin Surg. 2017 Mar;2:1–8.
35. Lara PN Jr, Coe TL, Zhou H, Fernando L, Holland PV, Wun T. Improved survival with plasma exchange in patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Am J Med. 1999 Dec;107(6):573–9. http://dx.doi.org/10.1016/S0002-9343(99)00286-7
36. Loirat C, Fremeaux-Bacchi V. Hemolytic uremic syndrome recurrence after renal transplantation. Pediatr Transplant. 2008 Sep;12(6):619–29. http://dx.doi.org/10.1111/j.1399-3046.2008.00910.x
37. Loirat C, Frémeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011 Sep;6:60. http://dx.doi.org/10.1186/1750-1172-6-60
38. Saland J. Liver-kidney transplantation to cure atypical HUS: Still an option post-eculizumab? Pediatr Nephrol. 2014 Mar;29(3):329–32. http://dx.doi.org/10.1007/s00467-013-2722-2
39. Lemaire M, Frémeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013 May;45(5):531–6. http://dx.doi.org/10.1038/ng.2590
40. Nishimura J, Yamamoto M, Hayashi S, Ohyashiki K, Ando K, Brodsky AL, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014 Feb;370(7):632–9. http://dx.doi.org/10.1056/NEJMoa1311084
41. Saland JM, Ruggenenti P, Remuzzi G, Consensus Study Group. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2009 May;20(5):940–9. http://dx.doi.org/10.1681/ASN.2008080906
42. Sung RS, Wiseman AC. Simultaneous liver-kidney transplant: Too many or just enough? Adv Chronic Kidney Dis. 2015 Sep;22(5):399–403. http://dx.doi.org/10.1053/j.ackd.2015.06.005
43. Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016 Jan;31(1):15–39. http://dx.doi.org/10.1007/s00467-015-3076-8
44. Darwish AA, McKiernan P, Chardot C. Paediatric liver transplantation for metabolic disorders. Part 1: Liver-based metabolic disorders without liver lesions. Clin Res Hepatol Gastroenterol. 2011 Mar;35(3):194–203. http://dx.doi.org/10.1016/j.clinre.2011.01.006
45. Kasahara M, Horikawa R, Tagawa M, Uemoto S, Yokoyama S, Shibata Y, et al. Current role of liver transplantation for methylmalonic acidemia: A review of the literature. Pediatr Transplant. 2006 Dec;10(8):943–7. http://dx.doi.org/10.1111/j.1399-3046.2006.00585.x
46. Ganschow R, Hoppe B. Review of combined liver and kidney transplantation in children. Pediatr Transplant. 2015 Dec;19(8):820–6. http://dx.doi.org/10.1111/petr.12593
47. Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: Clinical management update. Curr Opin Pediatr. 2016 Dec;28(6):682–93. http://dx.doi.org/10.1097/MOP.0000000000000422
48. Hörster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007 Aug;62(2):225–30. http://dx.doi.org/10.1203/PDR.0b013e3180a0325f
49. Kayler LK, Merion RM, Lee S, Sung RS, Punch JD, Rudich SM, et al. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant. 2002 Aug;6(4):295–300. http://dx.doi.org/10.1034/j.1399-3046.2002.02009.x
50. Nagarajan S, Enns GM, Millan MT, Winter S, Sarwal MM. Management of methylmalonic acidaemia by combined liver-kidney transplantation. J Inherit Metab Dis. 2005;28(4):517–24. http://dx.doi.org/10.1007/s10545-005-0517-8
51. Morioka D, Kasahara M, Takada Y, Corrales JP, Yoshizawa A, Sakamoto S. Living donor liver transplantation for pediatric patients with inheritable metabolic disorders. Am J Transplant. 2005 Nov;5(11):2754–63. http://dx.doi.org/10.1111/j.1600-6143.2005.01084.x
52. Morioka D, Kasahara M, Horikawa R, Yokoyama S, Fukuda A, Nakagawa A. Efficacy of living donor liver transplantation for patients with methylmalonic acidemia. Am J Transplant. 2007 Dec;7(12):2782–7. http://dx.doi.org/10.1111/j.1600-6143.2007.01986.x
53. Kaplan P, Ficicioglu C, Mazur AT, Palmieri MJ, Berry GT. Liver transplantation is not curative for methylmalonic acidopathy caused by methylmalonyl-CoA mutase deficiency. Mol Genet Metab. 2006 Aug;88(4):322–6. http://dx.doi.org/10.1016/j.ymgme.2006.04.003
54. Mc Guire PJ, Lim-Melia E, Diaz GA, Raymond K, Larkin A, Wasserstein MP, Sansaricq C. Combined liver-kidney transplant for the management of methylmalonic aciduria: A case report and review of the literature. Mol Genet Metab. 2008 Jan;93(1):22–9. http://dx.doi.org/10.1016/j.ymgme.2007.08.119
55. Vernon HJ, Sperati CJ, King JD, Poretti A, Miller NR, Sloan JL, er al. A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with mut (0) methylmalonic acidemia. J Inherit Metab Dis. 2014 Nov;37(6):899–907. http://dx.doi.org/10.1007/s10545-014-9730-7
56. Niemi AK, Kim IK, Krueger CE, Cowan TM, Baugh N, Farrell R, et al. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr. 2015 Jun;166(6):1455–61.e1. http://dx.doi.org/10.1016/j.jpeds.2015.01.051
57. Araki S, Ando Y. Transthyretin-related familial amyloidotic polyneuropathy-Progress in Kumamoto, Japan (1967–2010)-. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):694–706. http://dx.doi.org/10.2183/pjab.86.694
58. Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem. 2004 Jan;47(2):355–74. http://dx.doi.org/10.1021/jm030347n
59. Razavi H, Palaninathan SK, Powers ET, Wiseman RL, Purkey HE, Mohamedmohaideen NN, et al. Benzoxazoles as transthyretin amyloid fibril inhibitors: Synthesis, evaluation, and mechanism of action. Angew Chem Int Ed Engl. 2003 Jun;42(24):2758–61. http://dx.doi.org/10.1002/anie.200351179
60. Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci USA. 2012 Jun;109(24):9629–34. http://dx.doi.org/10.1073/pnas.1121005109
61. Bittencourt PL, Couto CA, Farias AQ, Marchiori P, Bosco Massarollo PC, Mies S. Results of liver transplantation for familial amyloid polyneuropathy type I in Brazil. Liver Transplant. 2002 Jan;8(1):34–9. http://dx.doi.org/10.1053/jlts.2002.29764
62. Herlenius G, Wilczek HE, Larsson M, Ericzon BG, Familial Amyloidotic Polyneuropathy World Transplant Registry. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: Results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation. 2004 Jan;77(1):64–71. http://dx.doi.org/10.1097/01.TP.0000092307.98347.CB
63. Muller KR, Padbury R, Jeffrey GP, Poplawski NK, Thompson P, Tonkin A, et al. Poor outcome after liver transplantation for transthyretin amyloid neuropathy in a family with an Ala36Pro transthyretin mutation: Case report. Liver Transplant. 2010 Apr;16(4):470–3. http://dx.doi.org/10.1002/lt.22019
64. Pilato E, Dell’Amore A, Botta L, Arpesella G. Combined heart and liver transplantation for familial amyloidotic neuropathy. Eur J Cardiothorac Surg. 2007 Jul;32(1):180–2. http://dx.doi.org/10.1016/j.ejcts.2007.03.023
65. Marriott AJ, Hwang NC, Lai FO, Tan CK, Tan YM, Lim CH, et al. Combined heart-liver transplantation with extended cardiopulmonary bypass. Singapore Med J. 2011 Mar;52(3):e48–51.
66. Chen YT. Type I glycogen storage disease: Kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991 Jan;5(1):71–6. http://dx.doi.org/10.1007/BF00852851
67. Vega AI, Medrano C, Navarrete R, Desviat LR, Merinero B, Rodríguez-Pombo P, et al. Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing. Genet Med. 2016;18(10):1037–43. http://dx.doi.org/10.1038/gim.2015.217
68. Ozen H. Glycogen storage diseases: New perspectives. World J Gastroenterol. 2007 May 14;13(18):2541–53. http://dx.doi.org/10.3748/wjg.v13.i18.2541
69. Chou JY, Jun HS, Mansfield BC. Glycogen storage disease type I and G6Pase-? deficiency: Etiology and therapy. Nat Rev Endocrinol. 2010 Dec;6(12):676–88. http://dx.doi.org/10.1038/nrendo.2010.189
70. Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, et al. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis. 2011 May;6:27. http://dx.doi.org/10.1186/1750-1172-6-27
71. Lei KJ, Shelly LL, Lin B, Sidbury JB, Chen YT, Nordlie RC, et al Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c. J Clin Invest. 1995 Jan;95(1):234–40. http://dx.doi.org/10.1172/JCI117645
72. Hiraiwa H, Pan CJ, Lin B, Moses SW, Chou JY. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem. 1999 Feb;274(9):5532–6.
73. Chou JY, Matern D, Mansfield BC, Chen YT. Type I glycogen storage diseases: Disorders of the glucose-6-phosphatase complex. Curr Mol Med. 2002 Mar;2(2):121–43. http://dx.doi.org/10.2174/1566524024605798
74. Simöes A, Domingos F, Fortes A, Prata MM. Type 1 glycogen storage disease and recurrent calcium nephrolithiasis. Nephrol Dial Transplant. 2001 Jun;16(6):1277–9.
75. Iida S, Matsuoka K, Inoue M, Tomiyasu K, Noda S. Calcium nephrolithiasis and distal tubular acidosis in type 1 glycogen storage disease. Int J Urol. 2003 Jan;10(1):56–8. http://dx.doi.org/10.1046/j.1442-2042.2003.00569.x
76. Kelly PM, Poon FW. Hepatic tumours in glycogen storage disease type 1 (von Gierke’s disease). Clin Radiol. 2001 Jun;56(6):505–8. http://dx.doi.org/10.1053/crad.2000.0457
77. Franco LM, Krishnamurthy V, Bali D, Weinstein DA, Arn P, Clary B, et al. Hepatocellular carcinoma in glycogen storage disease type Ia: A case series. J Inherit Metab Dis. 2005;28(2):153–62. http://dx.doi.org/10.1007/s10545-005-7500-2
78. Davis MK, Weinstein DA. Liver transplantation in children with glycogen storage disease: Controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant. 2008 Mar;12(2):137–45. http://dx.doi.org/10.1111/j.1399-3046.2007.00803.x
79. Shirasawa Y, Nomura T, Yoshida A, Hashimoto T, Kimura G, Ito M. Liver transplantation-associated hypercalcemia followed by acute renal dysfunction. Intern Med. 2004 Sep;43(9):802–6. http://dx.doi.org/10.2169/internalmedicine.43.802
80. Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A, et al. Diagnosis and management of glycogen storage disease type I: A practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014 Nov;16(11):e1. http://dx.doi.org/10.1038/gim.2014.128
81. Faivre L, Houssin D, Valayer J, Brouard J, Hadchouel M, Bernard O. Long-term outcome of liver transplantation in patients with glycogen storage disease type Ia. J Inherit Metab Dis. 1999 Aug;22(6):723–32. http://dx.doi.org/10.1023/A:1005544117285
82. Matern D, Starzl TE, Arnaout W, Barnard J, Bynon JS, Dhawan A, et al. Liver transplantation for glycogen storage disease types I, III, and IV. Eur J Pediatr. 1999 Dec;158(Suppl 2): S43–8. http://dx.doi.org/10.1007/PL00014320
83. Labrune P. Glycogen storage disease type I: Indications for liver and/or kidney transplantation. Eur J Pediatr. 2002 Oct;161(Suppl 1): S53–5. http://dx.doi.org/10.1007/s00431-002-1004-y
84. Maya Aparicio AC, Bernal Bellido C, Tinoco González J, Garcia Ruíz S, Aguilar Romero L, Marín Gómez LM, et al. Fifteen years of follow-up of a liver transplant recipient with glycogen storage disease type Ia (Von Gierke disease). Transplant Proc. 2013;45(10):3668–9. http://dx.doi.org/10.1016/j.transproceed.2013.10.033
85. Boers SJ, Visser G, Smit PG, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis. 2014 Apr;9:47. http://dx.doi.org/10.1186/1750-1172-9-47
86. Benedetti E, Pirenne J, Troppmann C, Hakim N, Moon C, Gruessner RW, et al. Combined liver and kidney transplantation. Transplant Int. 1996;9(5):486–91. http://dx.doi.org/10.1111/j.1432-2277.1996.tb00993.x
87. Lee PJ, Muiesan P, Heaton N. Successful pregnancy after combined renal-hepatic transplantation in glycogen storage disease type Ia. J Inherit Metab Dis. 2004;27(4):537–8. http://dx.doi.org/10.1023/B:BOLI.0000037397.39725.57
88. Panaro F, Andorno E, Basile G, Morelli N, Bottino G, Fontana I, et al. Simultaneous liver-kidney transplantation for glycogen storage disease type IA (von Gierke’s disease). Transplant Proc. 2004 Jun;36(5):1483–4. http://dx.doi.org/10.1016/j.transproceed.2004.05.070
89. Belingheri M, Ghio L, Sala A, Menni F, Trespidi L, Ferraresso M, et al. Combined liver-kidney transplantation in glycogen storage disease Ia: A case beyond the guidelines. Liver Transplant. 2007 May;13(5):762–4. http://dx.doi.org/10.1002/lt.21147
90. Marega A, Fregonese C, Tulissi P, Vallone C, Gropuzzo M, Toniutto PL, et al. Preemptive liver-kidney transplantation in von Gierke disease: A case report. Transplant Proc. 2011 May;43(4):1196–7. http://dx.doi.org/10.1016/j.transproceed.2011.03.003
91. Lindblad B, Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4641–5. http://dx.doi.org/10.1073/pnas.74.10.4641
92. De Braekeleer M, Larochelle J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet. 1990 Aug;47(2):302–7.
93. Paradis K, Weber A, Seidman EG, Larochelle J, Garel L, Lenaerts C, et al. Liver transplantation for hereditary tyrosinemia: The Quebec experience. Am J Hum Genet. 1990 Aug;47(2):338–42.
94. Mitchell G, Larochelle J, Lambert M, Michaud J, Grenier A, Ogier H, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med. 1990 Feb;322(7):432–7. http://dx.doi.org/10.1056/NEJM199002153220704
95. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992 Oct;340(8823):813–17. http://dx.doi.org/10.1016/0140-6736(92)92685-9
96. Holme E, Lindstedt S. Nontransplant treatment of tyrosinemia. Clin Liver Dis. 2000 Nov;4(4):805–14. http://dx.doi.org/10.1016/S1089-3261(05)70142-2
97. McKiernan PJ. Nitisinone in the treatment of hereditary tyrosinaemia type 1. Drugs. 2006;66(6):743–50. http://dx.doi.org/10.2165/00003495-200666060-00002
98. Shah I, Shah F. Tyrosinemia type I: Case series with response to treatment to NTBC. Indian J Gastroenterol. 2016 May;35(3):229–31. http://dx.doi.org/10.1007/s12664-016-0650-3
99. Freese DK, Tuchman M, Schwarzenberg SJ, Sharp HL, Rank JM, Bloomer JR, et al. Early liver transplantation is indicated for tyrosinemia type I. J Pediatr Gastroenterol Nutr. 1991 Jul;13(1):10–15. http://dx.doi.org/10.1097/00005176-199107000-00002
100. Arnon R, Annunziato R, Miloh T, Wasserstein M, Sogawa H, Wilson M, et al. Liver transplantation for hereditary tyrosinemia type I: Analysis of the UNOS database. Pediatr Transplant. 2011 Jun;15(4):400–5. http://dx.doi.org/10.1111/j.1399-3046.2011.01497.x
101. Herzog D, Martin S, Turpin S, Alvarez F. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation. 2006 Mar;81(5):672–7. http://dx.doi.org/10.1097/01.tp.0000185194.62108.a7
102. Gartner JC Jr, Zitelli BJ, Malatack JJ, Shaw BW, Iwatsuki S, Starzl TE. Orthotopic liver transplantation in children: Two-year experience with 47 patients. Pediatrics. 1984 Jul;74(1):140–5.
103. Jalanko H, Pakarinen M. Combined liver and kidney transplantation in children. Pediatr Nephrol. 2014 May;29(5):805–14; quiz 812. http://dx.doi.org/10.1007/s00467-013-2487-7
104. Parfrey H, Mahadeva R, Lomas DA. Alpha(1)-antitrypsin deficiency, liver disease and emphysema. Int J Biochem Cell Biol. 2003 Jul;35(7):1009–14. http://dx.doi.org/10.1016/S1357-2725(02)00250-9
105. Grewal HP, Brady L, Cronin DC 2nd, Loss GE, Siegel CT, Oswald K, et al. Combined liver and kidney transplantation in children. Transplantation. 2000 Jul;70(1):100–5.
106. Davis ID, Burke B, Freese D, Sharp HL, Kim Y. The pathologic spectrum of the nephropathy associated with alpha 1-antitrypsin deficiency. Hum Pathol. 1992 Jan;23(1):57–62. http://dx.doi.org/10.1016/0046-8177(92)90012-R
107. Wood AM, Stockley RA. Alpha one antitrypsin deficiency: From gene to treatment. Respiration. 2007;74(5):481–92. http://dx.doi.org/10.1159/000105536
108. Li H, Lu Y, Witek RP, Chang LJ, Campbell-Thompson M, Jorgensen M, et al. Ex vivo transduction and transplantation of bone marrow cells for liver gene delivery of alpha1-antitrypsin. Mol Ther. 2010 Aug;18(8):1553–8. http://dx.doi.org/10.1038/mt.2010.116
109. Hughes MG Jr, Khan KM, Gruessner AC, Sharp H, Hill M, Jie T, et al. Long-term outcome in 42 pediatric liver transplant patients with alpha 1-antitrypsin deficiency: A single-center experience. Clin Transplant. 2011 Sep–Oct; 25(5):731–6. http://dx.doi.org/10.1111/j.1399-0012.2010.01371.x
110. Elzouki AN, Lindgren S, Nilsson S, Veress B, Eriksson S. Severe alpha1-antitrypsin deficiency (PiZ homozygosity) with membranoproliferative glomerulonephritis and nephrotic syndrome, reversible after orthotopic liver transplantation. J Hepatol. 1997 Jun;26(6):1403–7. http://dx.doi.org/10.1016/S0168-8278(97)80478-3
111. Loreno M, Boccagni P, Rigotti P, Naccarato R, Burra P. Combined liver-kidney transplantation in a 15-year-old boy with alpha1-antitrypsin deficiency. J Hepatol. 2002 Apr;36(4):565–8. http://dx.doi.org/10.1016/S0168-8278(02)00012-0
112. Chandler RJ, Venditti CP. Gene therapy for metabolic diseases. Transl Sci Rare Dis. 2016;1(1):73–89. http://dx.doi.org/10.3233/TRD-160007
113. Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: Clinical successes, current challenges and future prospects. J Inherit Metab Dis. 2017 May;40(4):497–517. http://dx.doi.org/10.1007/s10545-017-0053-3
114. Castello R, Borzone R, D’Aria S, Annunziata P, Piccolo P, Brunetti-Pierri N. Helper-dependent adenoviral vectors forliver-directed gene therapy of primary hyperoxaluria type 1. Gene Ther. 2016 Feb;23(2):129–34. http://dx.doi.org/10.1038/gt.2015.107
115. Crane B, Luo X, Demaster A, Williams KD, Kozink DM, Zhang P, et al. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia. Gene Ther. 2012 Apr;19(4):443–52. http://dx.doi.org/10.1038/gt.2011.86
116. Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, et al. Adeno-associated virus gene therapy for liver disease. Hum Gene Ther. 2016 Dec;27(12):947–61. http://dx.doi.org/10.1089/hum.2016.160
117. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing ?1-antitrypsIn: Interim results. Hum Gene Ther. 2011;22(10):1239–47. http://dx.doi.org/10.1089/hum.2011.053