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Abstract

Chronic liver diseases (CLDs) are increasing in prevalence and their end-stage complications, namely, cirrhosis, liver failure and 
hepatocellular carcinoma represent major global challenges. The most common initiators of progressive CLD are viral hepatitis 
and long-term alcohol abuse as well as steatosis and steatohepatitis. Irrespective of the underlying aetiology, a common feature 
of CLD is the formation of hepatic ductular reactions, involving the proliferation of liver progenitor cells (LPCs) and their sig-
nalling to fibrosis-driving hepatic stellate cells. The Wnt/β-catenin pathway has been found to regulate development, stemness 
and differentiation, and alterations in its activity have been associated with tumour development. Recent data highlight the role 
of Wnt/β-catenin signalling in hepatic metabolism, steatosis and cancer, and suggest targeting of this pathway as a promising 
molecular strategy to potentially inhibit CLD progression and hepatocarcinogenesis.
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Introduction
Chronic liver disease (CLD) has become one of the most 
common causes of death globally with an estimated 1.03 
million deaths per year, as reported in 2017. Excessive al-
cohol consumption, viral hepatitis and hepatic steatosis are 
the most prevalent risk factors for the initiation and progres-
sion of CLD (1). A UK report stated that standardised CLD 

mortality rates have increased by 400% since 1970, reflect-
ing its growing burden and major challenge for global health 
(2). End-stage complications of CLD include cirrhosis, liver 
failure and malignancies, with hepatocellular carcinoma con-
stituting 85–90% of all liver cancers (3). Current therapy op-
tions for hepatocellular carcinoma include surgical resection, 
radiofrequency ablation, transarterial chemoembolisation 
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and orthotopic liver transplantation. The multikinase in-
hibitors sorafenib and regorafenib are the only systemic 
treatments with proven survival benefits and they prolong 
the life  expectancy of patients by 2 to 3 months (4). Im-
mune-based approaches, including targeting of the im-
mune checkpoint inhibitors programmed cell death (PD-1),  
programmed cell death ligand 1 (PD-L1) or cytotoxic 
 T-lymphocyte-associated protein 4 (CTLA-4), represent 
novel, promising therapeutic strategies to prevent or treat 
hepatocellular carcinoma (5).

Chronic Liver Disease and the Ductular Reaction
CLD induces molecular and cellular processes, which are ini-
tially reparative but become detrimental in the prolonged set-
ting. Damaged liver epithelial cells release pro-inflammatory 
signalling molecules, which recruit immune cells to the site 
of injury, induce collagen deposition or fibrosis and activate 
liver progenitor cells (LPCs) as part of the so-called ‘ductular 

reactions’ to restore lost liver tissue. The term ductular reac-
tion describes the diverse histological phenomena occurring 
in response to chronic hepatic injury and encompasses the 
epithelial component as well as inflammatory and fibrogenic 
changes (6). Ductular reactions are observed in all forms of 
CLD with hepatocyte injury and replicative arrest. However, 
depending on the underlying aetiology, they display diverse 
morphologies, ranging from well-formed ductules to irregu-
lar strings of cells without obvious lumina (7). Irrespective 
of the injury stimulus, ductular reactions, activated biliary 
epithelial cells and LPCs are generally closely associated with 
inflammatory cell populations and fibrosis-driving, activated 
hepatic stellate cells, forming a very dynamic injury and re-
generation niche (Figure 1). Although significant differences 
in injury and repair dynamics can be observed in different 
forms of CLD (8), epithelial, inflammatory and fibrogenic 
cells principally orchestrate liver regeneration versus disease 
progression through chemokine and cytokine crosstalk in all 
clinical settings (6, 9–13).

Figure 1. The injury and regeneration niche during chronic liver injury. Murine chronic liver injury induced by feeding a 
 choline-deficient, ethionine-supplemented diet 15 leads to formation of an injury and regeneration niche, involving CKpan+ 
ductular cells and LPCs (green), αSMA+ hepatic stellate cells (red) and CD45+ inflammatory cells (white). DAPI was used for 
nuclear localisation.
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Liver Progenitor Cells and Cancer Stem Cells
LPCs are defined as a heterogeneous pool of immature, bi-
potential hepatic cells with diverse marker expression profiles 
and the ability to differentiate into either hepatocytes or bil-
iary epithelial cells, depending on the underlying injury stim-
ulus and thus tissue requirements. They are undetectable in 
healthy liver but upon injury emerge in portal areas near the 
Canals of Hering. Their origin and liver repopulation capac-
ity have been controversially discussed (14). Studies using the 
choline-deficient, ethionine-supplemented model of chronic 
liver injury (15) reported that LPCs expressing osteopontin 
(16) or Foxl1 (17) contributed to hepatocellular regeneration. 
In addition, transplantation of clonogenic LPCs into hepa-
tocyte-senescent murine livers, induced through deletion of 
the E3 ubiquitin ligase Mdm2, resulted in restoration of the 
hepatic parenchyma through generation of hepatocytic or 
biliary epithelia (18). The exact underlying mechanisms of 
LPC-mediated liver regeneration are not always clear; how-
ever, hepatocyte senescence seems to be a definite histological 
requirement (19).

The degree of LPC proliferation directly correlates with 
the severity of hepatocyte replicative arrest and the inflam-
matory and fibrogenic responses to CLD (20). Targeting 
of c-kit+ LPCs through the multikinase inhibitor imatinib 
mesylate during experimental chronic liver injury resulted 
in reduced fibrogenesis and carcinogenesis (21). Moreover, 
the presence of hepatobiliary LPCs, marked by epithelial 
cell adhesion molecule (EpCAM) and cytokeratin 7 and 19, 
predicted an increased risk of tumour formation in cirrhotic, 
hepatitis C virus–infected patients (22). This suggests that 
some LPCs either indirectly influence tumour development 
by regulating the fibrogenic potential and chemotaxis of 
neighbouring hepatic stellate cells (9, 12, 13, 23) or directly as 
tumour-initiating or cancer stem cells (CSCs).

In general, CSCs are defined as undifferentiated cells 
that are capable to self-renew, initiate and maintain tumour 
growth and may be responsible for tumour recurrence after 
resection. Haraguchi and colleagues first postulated the ex-
istence of liver CSCs, based on the finding that the hepato-
cellular carcinoma cell lines HuH7 and Hep3B contained 
0.9–1.8% of side population cells with the ability to efflux the 
fluorescent nucleic acid-binding dye Hoechst 33342 through 
high activity of adenosine triphosphate-binding cassette 
transporters (24). Similar side population cells successfully 
induced xenograft tumours upon transplantation into immu-
nodeficient NOD/SCID mice, while no tumour formation was 
observed when non-side population cells were transplanted 
(25). Subsequently, numerous studies have focussed on the 
identification of reliable marker expression profiles for liver 
CSCs. The CD133+ subpopulation of various hepatocellular 
carcinoma cell lines displayed a more immature, proliferative 
phenotype with greater colony formation capacity in  vitro 
and upon xenotransplantation a higher tumorigenic poten-
tial compared to the CD133− cellular counterpart (26–28). 

Within the CD133+ population, cells with the expression pro-
file CD133+CD44+ have been described as more tumorigenic 
and metastatic than CD133+CD44− cells (29, 30). Other stud-
ies have suggested the mucin-like cell  surface glycoprotein 
CD24 (31) and the glycosylphosphatidylinositol-anchored 
glycoprotein CD90 or Thy-1 (32) as liver CSC markers. 
The transmembrane glycoprotein EpCAM is expressed by 
normal LPCs and CSCs and regulates cell–cell adhesion, 
proliferation, migration, differentiation and invasion (33). 
EpCAM is transcriptionally activated by the Wnt/β- catenin 
pathway, while inhibition of Wnt/β-catenin signalling was 
shown to suppress its expression (34). Interestingly, both 
CD44 and CD24 are direct Wnt target genes, marking this 
signalling pathway a key player in CSC biology and therefore 
a potential therapeutic target to prevent or treat hepatocellu-
lar carcinoma.

There is strong experimental evidence for Wnt signalling 
directly regulating the biology of LPCs and CSCs. Using the 
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) model of 
chronic liver injury, Hu et al. demonstrated Wnt/β-catenin 
signalling activity in proliferating A6+ LPCs and ductular 
 reactions. Primary LPCs showed active, nuclear β-catenin 
and entered the cell cycle upon Wnt3a stimulation in vitro 
(35). A  constitutively active β-catenin mutant was shown 
to  promote LPC expansion in rodents subjected to the  
2-acetylaminofluorene/partial hepatectomy model. In addi-
tion, the less differentiated, LPC-like, OV6+ subpopulation 
of hepatocellular carcinoma cells displayed endogenously ac-
tive Wnt/β-catenin signalling, coupled with a more aggressive 
phenotype, as judged by greater tumorigenicity and chemore-
sistance (36). Boulter and colleagues reported Wnt3a-induced 
expression of the ubiquitin ligase Numb, which is required to 
leave the biliary differentiation path, and hepatocyte nuclear 
factor 4α in the LPC line BMOL (37), together inducing its 
differentiation towards the hepatocyte lineage (38).

The Wnt/β-Catenin Signalling Pathway
The Wnt signalling pathway is highly conserved and has 
been associated with embryogenesis, proliferation, differ-
entiation as well as carcinogenesis (39–41). It consists of 
19 Wnt ligands, 10 Wnt receptors, referred to as frizzleds 
(FZD), a family of  co-receptors, including low-density li-
poprotein receptor-related proteins 5 and 6 (LRP5 and 6), 
and two branches of  the pathway exist (42, 43). The non- 
canonical pathway comprises the planar cell polarity 
pathway (PCP) and the Ca2+ pathway. These are β- catenin-
independent pathways that play roles in the regulation of 
the actin cytoskeleton and cytoskeletal rearrangement and 
will not be discussed further. In contrast, the canonical 
pathway is β-catenin-dependent and of  particular interest 
therapeutically, as aberrant activation of  this pathway has 
been postulated as a key driver in many malignancies such 
as prostate, colorectal, ovarian and liver cancer (41).
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During the inactive ‘off’ state, there is no Wnt ligand 
bound to the FZD receptor, which results in the multi-protein 
 destruction complex, consisting of glycogen synthase kinase 
3β (GSK3β), casein kinase 1 (CK1), adenomatous polyposis 
coli (APC) and Axin, to bind β-catenin. The destruction com-
plex then phosphorylates β-catenin in a sequential pattern on 
residues serine 33 (S33), serine 37 (S37) and threonine (T41). 
Beta-catenin is then ubiquitinated by the E3-ligase beta- 
transducin repeat containing protein (βTRCP) and marked 
for proteasomal degradation, preventing it from translocating 
to the nucleus. The transcription repressor Groucho remains 
bound to T-cell factor/lymphoid enhancer factor (TCF/LEF) 
transcription factors, inhibiting transcription of target genes 
such as c-Myc and cyclin D1 (Figure 2) (40). Conversely, in 

the active ‘on’ state, a Wnt ligand binds to a FZD receptor, 
activating the protein dishevelled (Dvl), a  cytoplasmic phos-
phoprotein crucial for Wnt signal transduction. Axin is re-
cruited to the plasma membrane, binding to the co-receptor 
LRP5/6 and inhibiting GSK3β and the destruction complex. 
This allows unphosphorylated β-catenin to accumulate in the 
cytoplasm and translocate into the nucleus, where Groucho is 
displaced and unbound from TCF/LEF transcription factors. 
In this case, β-catenin is able to bind and activate downstream 
signalling (Figure 2) (40). It has been estimated that Wnt/β-
catenin signalling regulates the expression of more than 80 
target genes involved in cell fate determination, development, 
regeneration, zonation, metabolism, fibrosis and carcinogen-
esis of the liver (44, 45).

Figure 2. The canonical Wnt/β-catenin pathway. In the absence of a Wnt signal (‘OFF’ state), the destruction complex, con-
sisting of adenomatosis polyposis coli (APC), glycogen synthase kinase 3-β (GSK3β), casein kinase 1 (CK1) and Axin, binds 
and phosphorylates β-catenin, marking it for ubiquitination by the E3 ubiquitin ligase subunit beta-transducin repeat containing 
protein (βTRCP) and degradation through the proteasome. In this case, the repressor Groucho remains bound to T-cell factor/
lymphoid enhancer factor (TCF/LEF) transcription factors, inhibiting transcription of target genes such as c-Myc and cyclin D1 
(A). When a Wnt protein binds a Frizzled receptor and the low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) in 
the ‘ON’ state, the protein dishevelled (Dvl) activates a cascade, which eventually disrupts the destruction complex, leading to sta-
bilisation, cytoplasmic accumulation and nuclear translocation of β-catenin and ultimately the transcription of target genes (B).
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Wnt/β-Catenin Signalling in Liver Metabolism
The liver regulates metabolic homeostasis by controlling 
glycogen storage, gluconeogenesis, plasma protein synthe-
sis, lipoprotein synthesis and detoxification. To manage 
fluctuating metabolic demands, hepatic cells constantly 
alter the expression of respective regulatory pathways. Ac-
cordingly, hepatic Wnt signalling activity is modified under 
different physiological and pathophysiological conditions 
(45). In adult healthy hepatocytes, β-catenin is ubiquitously 
expressed, but it is more active in pericentral compared to 
periportal hepatocytes (44). Expression of β-catenin in peri-
portal regions is inhibited by hepatocyte nuclear factor 4α 
(46). In contrast, pericentral hepatocytes display basal acti-
vation of β-catenin signalling, controlling expression levels 
of glutamine synthetase, ornithine aminotransferase and the 
glutamate transporter GLT-1, which together regulate glu-
tamine metabolism (47). This heterogeneous distribution of 
metabolic function across the lobule reflects hepatic zonation 
and is necessary to achieve optimal metabolic regulation. 
Benhamouche and colleagues established that the Wnt/β-
catenin pathway is a major control switch pathway for met-
abolic zonation by demonstrating that blocking of β-catenin 
in hepatocytes by infection with an adenovirus encoding the 
Wnt signalling antagonist Dickkopf-1 (Dkk-1) resulted in ex-
pansion of the periportal transcriptome and downregulation 
of perivenous genes. Conversely, constitutive activation of  
β-catenin through liver-induced disruption of the negative 
regulator APC reversed this gene expression profile and in-
duced the perivenous gene expression programme (48).

The localisation and signalling activity of β-catenin be-
comes modified upon liver injury (Figure 3) (44, 49). Debebe 
and colleagues demonstrated recently that hepatic steatosis 
experimentally induced by feeding of a high fat diet, deletion 
of phosphatase and tensin homologue deleted on chromo-
some 10 (Pten) or transgenic expression of HCV core/NS5A 
protein, all resulted in macrophage-secreted Wnt activating 
CD133+CD49f+ tumour-initiating cells. These data strongly 
suggested a Wnt/β-catenin-mediated link between obesity 
and cancer (50). In addition, β-catenin was shown to regu-
late hepatic gluconeogenesis during starvation and insulin- 
resistant conditions via interaction with the transcription 
factor forkhead box protein O 1 (FoxO1). This interaction 
leads to a change in expression of genes encoding the enzymes 
glucose-6-phosphatase and phosphoenolpyruvate carboxyki-
nase, which then determine the rate of hepatic gluconeogen-
esis (44, 51). During oxidative stress conditions, β-catenin 
interacts with FOXO and enhances FOXO transcriptional 
activity to induce expression of targets for detoxification of 
reactive oxygen species (52). FOXO factors are sensitive to 
increased insulin levels, hence the interaction of β-catenin 
and FOXO is particularly important in diseases associated 
with insulin resistance, such as non-alcoholic fatty liver 
disease (NAFLD), non-alcoholic steatohepatitis (NASH) 
and the metabolic syndrome in general (44). The metabolic 

syndrome, previously known as the insulin-resistance syn-
drome, has been defined as a clustering of the risk factors, 
namely, central obesity, hypertension, hypertriglyceridaemia, 
hyperglycaemia and low levels of high-density lipoprotein 
(53). Metabolic syndrome as well as NAFLD are associated 
with reduced insulin sensitivity and decreased insulin effects 
on glucose and lipid metabolism (54).

Numerous studies have established a role of the Wnt/β- 
catenin pathway in the metabolic syndrome since it was 
demonstrated that Wnt signalling represents a molecular 
switch to control adipogenesis. Activation of the canoni-
cal Wnt/β-catenin pathway through Wnt10b, inhibition of 
GSK3β or expression of dominant stable β-catenin prevented 
differentiation of preadipocytes and myoblasts through in-
hibition of the adipogenic transcription factors CCAAT/
enhancer-binding protein α (C/EBPα) and peroxisome pro-
liferator-activated receptor γ (PPARγ) (55, 56). Kennell and 
MacDougald investigated Xenopus Wnt8 and FZD1 or FZD2 
chimeras and established a role for both β-catenin-dependent 
and β-catenin-independent mechanisms in mesenchymal cell 
fate and adipogenesis (57). Conversely, in a recent report, inhi-
bition of Wnt signalling through the Wnt-inhibitory molecule 
sclerostin led to spontaneous adipogenesis of pre-adipocytes 
and mesenchymal precursors (58), supporting the concept of 
Wnt signalling controlling the adipogenic switch.

Wnt/β-Catenin Signalling and Cancer
In hepatocellular carcinoma cells, the most frequent muta-
tions occur in TP53, coding for the tumour suppressor p53, 
and CTNNB1, the β-catenin gene (59). Coste and colleagues 
suggested that 26% of human and 50% of mouse hepatocel-
lular carcinomas carry activating mutations in CTNNB1 (60). 
Subsequent studies supported these findings and reported up 
to 44% of hepatocellular carcinomas with CTNNB1 muta-
tions (61–64). Activation of β-catenin is hypothesised to 
be due to mutations in exon-3 at the serine and/or threon-
ine sites near the NH

2
 terminus in CTNNB1, which inhibit 

phosphorylation-dependent degradation of the β-catenin 
protein, leading to an aberrant activation of the canonical 
Wnt/β-catenin pathway (44). Simultaneous mutation of the 
β-catenin gene and the tumour suppressor H-ras or p21 by 
an adenovirus-mediated liver-specific Cre-expression system 
resulted in 100% tumour incidence with short latency of only 
several weeks (65). Interestingly, mutations in the β-catenin 
gene in hepatocellular carcinomas induce overexpression 
of β-catenin targets such as the glutamine synthetase gene 
GLUL (66, 67), whereas hepatocytes from glutamine syn-
thetase-negative tumours are often H-ras or BRAF mutated 
and express E-cadherin, reflecting perivenous and periportal 
profiles, respectively (68). Loss-of-function in APC and Axin 
is mutually exclusive to CTNNB1 mutations and has been de-
tected in 1–3% and 8–15% of hepatocellular carcinoma cases 
(for review, see (69)).
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In a 2009 study, the Wnt ligands Wnt3, Wnt9a and Wnt10b 
were shown to be highly expressed in most hepatocellu-
lar carcinoma cell lines, irrespective of their differentiation 
status. Clear profiles were, however, observed with Wnt2b, 
Wnt4, Wnt5a, Wnt5b and Wnt7b, which were overexpressed 
in poorly differentiated cell lines, while Wnt8b and Wnt9b 
were only expressed in well-differentiated cell lines. These 
data suggested canonical Wnt signalling activity in well- 
differentiated cells, contributing to tumour initiation and its 
repression in poorly differentiated cell lines, which the authors 
hypothesised to regulate tumour progression (70). Other Wnt 

pathway components associated with hepatocellular carci-
noma development include Wnt signalling antagonists such 
as secreted frizzled-related proteins (SFRPs), Wnt-inhibitory 
factor (WIF)-1 and Dickkopf (Dkk) proteins. SFRP1 has 
been suggested as a tumour suppressor gene, since its expres-
sion was downregulated due to promoter hypermethylation 
in 76.1% of hepatocellular carcinoma specimens at the RNA 
level and in 30% at the protein level (71). In hepatocellular 
carcinoma cell lines and clinical specimens, WIF-1 expression 
was equally found to be repressed by promoter hypermethyla-
tion, suggesting epigenetic inactivation as the primary cause 

Figure 3. Beta-catenin and CK19 expression in healthy and injured liver. In healthy mouse liver, only ducts stain with an antibody 
targeting CK19 and show cytoplasmic and nuclear β-catenin expression, while β-catenin is exclusively membrane-bound in peri-
portal hepatocytes (healthy liver, left panel). In injured liver (2-week treatment with a choline-deficient, ethionine- supplemented 
diet15), the CK19+ compartment expands and demonstrates strong cytoplasmic and nuclear β-catenin, signifying active signalling 
(injured liver, right panel).
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for WIF-1 loss during hepatocarcinogenesis (72). Inactivity 
of the negative Wnt regulators Dkk2 and Dkk3 has been re-
ported in human gastrointestinal tumours (73). Fatima and 
colleagues observed significantly reduced mRNA expression 
of Dkk4 in almost half  of all investigated hepatocellular car-
cinoma cases. Immunohistochemical data linked decreased 
Dkk4 expression to accumulation of β-catenin in hepatoc-
ellular carcinoma tissue. In addition, the authors showed 
that Dkk4 overexpression in hepatocellular carcinoma cell 
lines resulted in reduced cell proliferation, colony formation 
and cell migration, suggesting a tumour-suppressive role for 
Dkk4 (74). A recent study demonstrated that hepatocellular 
carcinoma cells proliferate upon stimulation in high glucose 
conditions as a result of Dkk4 downregulation, allowing 
Wnt3a-mediated β-catenin signalling and c-Myc upregula-
tion (75), suggesting the Wnt pathway may be a therapeutic 
target in insulin-resistant conditions, leading to hepatocellu-
lar carcinoma.

Conclusion
Many diverse signalling pathways regulate liver development, 
homeostasis, regeneration and carcinogenesis. Given the 
strong evidence for an association of (i) progressive liver dis-
ease and LPCs, (ii) CSC-like LPCs and liver tumour forma-
tion and (iii) obesity, insulin resistance, hepatic steatosis and 
hepatocarcinogenesis, and the fact that the Wnt/β-catenin 
signalling seems to be playing major roles in all these pro-
cesses, this pathway represents a particularly promising ther-
apeutic target to prevent or treat hepatocellular carcinoma.
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