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Abstract

Acute kidney injury (AKI) is an emergency condition that requires restrictive and appropriate clinical interventions. Identifying mechanisms 
of organ injury is a critical step in developing clinical interventions. Unilateral ureter obstruction (UUO) is widely used as an animal model for 
investigating AKI. The current study was designed to evaluate the role of mitochondrial impairment and oxidative stress in the pathogenesis of 
renal injury in UUO model. Mice underwent UUO surgery. Then, kidney tissue histopathological changes, plasma biomarkers of renal injury, 
oxidative stress, and different renal mitochondrial indices were evaluated at scheduled time intervals (3, 7, 14, and 21 days after UUO surgi-
cal procedure). Significant increase in plasma creatinine and blood urea nitrogen levels was evident in UUO mice. The UUO surgery induced 
severe kidney tissue histopathological alterations, including necrosis, severe tubular atrophy, and interstitial inflammation. Moreover, kidney 
biomarkers of oxidative stress included reactive oxygen species formation, lipid peroxidation, protein carbonylation, decreased glutathione res-
ervoirs (GSH), and increased oxidized glutathione (GSSG) observed in UUO mice. On the other hand, significant mitochondrial depolarization, 
decreased mitochondrial dehydrogenases activity, mitochondrial permeabilization, and decreased adenosine triphosphate and GSH/GSSG levels 
were discovered in mitochondria isolated from the kidneys of UUO mice. The data obtained from the current study demonstrated a pivotal and 
interconnected role for oxidative stress and mitochondrial dysfunction in the pathogenesis of renal injury in UUO model. Therefore, these direc-
tions could serve as therapeutic targets in animal models or patients of acute renal failure.
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Introduction
Renal disease refers to a wide range of disorders ranging 
from mild kidney function abnormalities to failure of this 
vital organ. In this context, acute kidney injury (AKI) is 
an emergency clinical condition that needs appropriate and 
restricted clinical interventions to prevent renal failure (1, 2). 
A wide range of diseases and xenobiotics could cause 
AKI  (1–6). The ultimate goal in patients with severe renal 
disease could be organ transplantation. However, detection 
of early tissue damage and understanding of the disease’s 
mechanisms could prevent/delay organ transplantation by 
developing appropriate therapeutic interventions.

The term oxidative stress refers to the situation where the 
balance between production and removal of reactive oxygen 
species (ROS) in biological environments is impaired (7). 
There is a plethora of evidence indicating the central role 
of oxidative stress and its associated complications in the 
pathogenesis of AKI (8–14). Increased levels of biomarkers 
of oxidative stress, including ROS formation, lipid peroxida-
tion, oxidative damage of proteins, and other intracellular 
components (e.g., DNA), as well as a significant impairment 
of renal antioxidant defense mechanisms, have been doc-
umented in various models of AKI (15–19). Therefore, the 
role of oxidative stress and its association to mitochondrial 
impairment is highlighted in the current AKI model of uni-
lateral ureter obstruction (UUO).

The association between oxidative stress and damage 
to vital organelles, such as mitochondria, is well docu-
mented (20–24). Mitochondria act as a powerhouse for pro-
ducing cell energy. Meanwhile, mitochondria are also cells’ 
most critical ROS production center (20, 25–27). Therefore, 
there is a robust connection between oxidative stress and 
mitochondrial impairment.

Kidney tissue contains many mitochondria that, by pro-
ducing sufficient energy, enable vital processes, such as 
reabsorbing substances in the kidney (27–30). Loss of mito-
chondrial function in renal tissue and consequent insufficient 
production of adenosine triphosphate (ATP) can lead to the 
urinary loss of vital electrolytes, vitamins, and minerals (29). 
Eventually, mitochondrial damage can lead to the release of 
cell death mediators from this organelle, leading to cytotox-
icity, organ injury, and renal failure (29, 31, 32). The role of 
renal mitochondrial impairment and its association with oxi-
dative stress are evaluated in the current model of UUO.

Obstructive renal injury and nephropathy are frequent clin-
ical complications that could lead to AKI (33, 34). Despite 
their etiology, these complications could lead to irreversible 
consequences, such as renal failure. Therefore, identifying the 
mechanisms involved in the pathogenesis of obstructive kid-
ney damage might help develop novel therapeutic strategies 
to control renal diseases. The current study aimed to evaluate 
the role of oxidative stress and mitochondrial impairment in 

the pathogenesis of renal injury in the UUO model of AKI. 
The data obtained from this study could help develop novel 
therapeutic strategies to combat AKI with different etiologies.

Materials and Methods
Reagents
2′,7′-Dichlorofluorescein diacetate (DCFH-DA), reduced glu-
tathione (GSH), trichloroacetic acid (TCA), malondialdehyde 
(MDA), 3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide (MTT), sucrose,3-(N-morpholino) propanesul-
fonic acid (MOPS), D-mannitol, ferric chloride hexahydrate 
(FeCl3.6H2O), rhodamine123 (Rh 123), thiobarbituric acid 
(TBA), 2,4,6-tripyridyl-s-triazine (TPTZ), dithiothreitol 
(DTT), coomassie brilliant blue, 2,4-dinitrophenyl hydra-
zine (DNPH), and 6-hydroxy-2,5,7,8-tetramethylchroman-2- 
carboxylic acid (Trolox) were purchased from Sigma 
 (Sigma-Aldrich, USA). Kits for measuring serum bio-
markers of renal injury were obtained from Pars-Azmun® 
(Tehran, Iran). Meta-phosphoric acid, n-propanol, ethylenedi-
aminetetraacetic acid (EDTA), perchloric acid, and 2-amino-
2-hydroxymethyl- propane-1, 3-diol-hydrochloride (Tris-HCl) 
were purchased from Merck (Darmstadt, Germany).

Animals
Male BALB/c mice (n = 60, 25±3 g) were obtained from Shi-
raz University of Medical Sciences, Shiraz, Iran.  Animals 
were kept at an environmental temperature of 23±1ºC with 
≈40% relative humidity and adequate ventilation. Animals 
had free access to tap water and a standard pellet chow 
during experiments. The Institutional Laboratory Animal 
Care and Use Committee at Shiraz University of  Medical 
Sciences Shiraz, Iran, approved all animal experiments 
(Code: IR.SUMS.REC.1398.1220). The Animal Research: 
Reporting of In Vivo Experiments (ARRIVE) guidelines for 
the care and use of experimental animals were also followed.

Unilateral ureter obstruction model of acute 
kidney injury
Animals were randomly divided into the UUO and sham- 
operated groups. The UUO model was induced based on the 
previously reported protocol (35). Briefly, mice were anes-
thetized with a mixture of 8 mg/kg xylazine and 60 mg/kg 
 ketamine. The left ureter was isolated and doubly ligated. The 
sham-operated mice underwent an identical surgical interven-
tion for ureter identification and manipulation without liga-
tion (35). Animals were recovered under Infrared (IR) light 
and received normal saline (2.5 mL/kg subcutaneous [s.c.]). 
Mice had access to easy food on the first day after surgery (36). 
No mortality rate was discovered in the current study.
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was treated with 1 mL of TBARS assay reagent (a mixture 
of 0.4% w:v of thiobarbituric acid, 50% w:v of trichloroace-
tic acid, and 1% w:v of meta-phosphoric acid, pH = 2) (9, 
42, 63–70). Samples were vortexed (1 min) and heated (100 C 
water bath) for 45 min. Then, 1 mL of n-butanol was added. 
Samples were mixed considerably and centrifuged (10,000 
×g, 20 min, 25°C). Finally, absorbance of the upper phase 
was measured (λ = 532 nm) (9, 71–74).

Renal hydroxyproline levels
Renal hydroxyproline content was assessed as an index of 
tissue fibrosis. Briefly, 500 µL of tissue homogenate (10% w: 
v in Tris-HCl buffer) was digested in 1 mL of hydrochloric 
acid (6 N) at 120°C (12 h). Afterward, an aliquot of digested 
homogenate (250 μL) was treated with 250 μL of citrate-ac-
etate buffer (pH = 6) and 500 μL of chloramines-t (56 mM) 
and incubated at room temperature for 20 min. Then, 500 
μL of Ehrlich’s reagent (15 g of p-dimethyl amino benzalde-
hyde in n-propanol/perchloric acid; 2:1 v:v) was added and 
incubated at 65°C (15 min). Finally, the absorbance of the 
developed color was measured at λ = 550 nm (75).

Total antioxidant capacity of the kidney tissue
The ferric-reducing antioxidant power (FRAP) assay mea-
sured the total antioxidant capacity of renal tissue (9, 76). 
Tissue was homogenized in an ice-cooled (4ºC) 40-mM Tris-
HCl buffer. Afterward, 100 µL of tissue homogenate (10% 
w:v in Tris-HCl buffer) was added to 900 µL of freshly pre-
pared FRAP reagent (77–82). Samples were incubated at 
37ºC (5 min, protected from light). Finally, the absorbance 
was measured at λ = 595 nm (9, 83).

Myeloperoxidase enzyme activity in the kidney
Myeloperoxidase (MPO) activity of the renal tissues of UUO 
mice was assessed based on the previously reported proce-
dure (84). Briefly, tissue specimens (100 mg) were homogenized 
in 1 mL of hexadecyl-trimethyl-ammonium bromide (HTAB) 
solution (0.5% w:v of HTAB; dissolved in 50-mM potassium 
phosphate buffer; pH = 6, at 4°C) and centrifuged (3000 ×g, 20 
min, at 4°C). Then, 100 µL of the supernatant was added to 2.9 
mL of 50-mM potassium phosphate buffer (pH = 6; containing 
16.7-mg/100 mL of O-dianisidine hydrochloride and 0.0005% 
v:v of H2O2). Samples were incubated in dark for 5 min (25°C). 
Then the reaction was stopped by HCl (100 µL of 1.2 M). 
Finally, the absorbance was measured at λ = 400 nm (84).

Kidney mitochondria isolation
The differential centrifugation method was used to isolate 
kidney mitochondria (85–89). For this purpose, mice kidneys 

Experimental setup and sample collection
Animals were intensely anesthetized with thiopental, 100 
mg/kg, at different time intervals (3, 7, 14, and 21 days after 
UUO procedure). Blood samples (1 mL from the inferior 
vena cava) were transferred to sodium citrate-coated tubes, 
and the plasma was prepared (4000 g, 20 min, 8°C). After-
ward, five mice in each group were randomly selected for 
kidney mitochondria isolation. Kidneys of five other mice 
were used to assess histopathological alterations and oxida-
tive stress biomarkers. All mentioned markers were also eval-
uated in the right intact kidney (without ureter obstruction; 
as a control in each animal) on day 21 post-UUO surgery of 
right kidney (UUO-RK).

Reactive oxygen species formation 
Reactive oxygen species were estimated in the kidneys of 
UUO mice using the 2′,7′-dichlorofluorescein diacetate 
(DCF-DA) method (9, 37–41). Briefly, 200 mg of tissue 
samples were homogenized in 5 mL of ice-cooled Tris-HCl 
buffer (40 mM, pH = 7.4). Then, 100 µL of the resulting tis-
sue homogenate was mixed with 900 µL of Tris-HCl buffer 
(40 mM, pH = 7.4) and 10 µL of DCF-DA (final concentra-
tion of 10 µM) (3, 42–47). Samples were incubated in dark 
for 10 min (37ºC shaker incubator). Finally, the fluorescence 
intensity was assessed using a FLUOstar Omega® fluorimeter 
(λexcit = 485 nm and λemiss = 525 nm) (9, 37, 40, 48, 49).

Protein carbonylation
Renal tissue protein carbonylation in UUO mice was 
assessed based on the dinitrophenyl hydrazine (DNPH) 
test  (50–52). Briefly, kidney tissue (200 mg) was homoge-
nized in 5-mL phosphate buffer (pH = 7.5, containing 0.1% 
v:v of triton X-100). Samples were centrifuged (700 ×g, 10 
min, 4ºC) and the resulting supernatant was treated with 
1500 µL of 10-mM DNPH solution (dissolved in 6-M HCl). 
Samples were incubated in a shaker incubator (for 1 h, 25ºC, 
protected from light) (50, 51, 53–56). Afterward, 500-µL 
trichloroacetic acid (20% w:v) was added and centrifuged 
(17,000 ×g, 5 min, 4ºC). The pellet was washed for five times 
with ethanol:ethyl acetate (1 mL of 1:1 v:v) and redissolved 
in guanidine chloride (6 M, pH = 2.3). Finally, samples were 
centrifuged (17,000 ×g, 1 min, 4ºC), and the absorbance of 
the supernatant was assessed (λ = 370 nm) (51, 57).

Lipid peroxidation
The thiobarbituric acid reactive substances (TBARS) test 
was used to assess lipid peroxidation in the kidneys of 
UUO mice (9, 47, 58–62). For this purpose, 0.5 mL of tissue 
homogenate (10% w:v in Tris-HCl buffer, 40 mM, pH = 7.4) 
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were washed and minced in an ice-cold buffer medium (220-
mM sucrose, 2-mM HEPES, 0.5-mM EGTA, 70-mM manni-
tol, and 0.1% bovine serum albumin (BSA), pH = 7.4). Then, 
the minced tissue was transported into a fresh buffer (5-mL 
buffer/1 g of the kidney) and homogenized. The homoge-
nized tissue was centrifuged (1000 ×g, 20 min, 4°C), and the 
supernatant was collected (90–93). The supernatant was cen-
trifuged again (10,000 ×g, 20 min, 4°C) to pellet mitochon-
drial fraction. The mitochondrial pellet was washed for at 
least three times using fresh isolation buffer to increase mito-
chondrial purity and yield. Finally, isolated mitochondria 
were suspended in buffer and used for further evaluation.

Mitochondrial dehydrogenases activity
The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT) assay was applied to determine renal mito-
chondrial dehydrogenases activity (8, 44, 94–96). Briefly, a 
mitochondrial suspension (0.5-mg protein/mL) was incu-
bated with 40 µL of 0.4% w:v of MTT solution (37°C, 30 
min, protected from light) (85, 97). Then the samples were 
centrifuged (10,000 ×g, 20 min), and the pellet was dissolved 
in dimethyl sulfoxide (DMSO, 1000 µL). Finally, the absor-
bance was measured at λ = 570 nm (98–100).

Mitochondrial depolarization
Briefly, mitochondrial fractions (0.5-mg protein/mL) were 
incubated with 10 µM of Rh 123 at 37ºC in a shaker incu-
bator (10 min, protected from light) (101–104). Afterward, 
samples were centrifuged (10,000 ×g, 10 min, 4ºC), and 
the fluorescence intensity of the supernatant was assessed 
(FLUOstar Omega® Fluorimeter; λexcitation = 485 nm and 
 λemission = 525 nm) (9, 105–107).

Mitochondrial swelling 
Analysis of mitochondrial swelling was estimated through 
changes in light scattering (105, 108–114). Briefly, isolated 
mitochondria samples (0.5-mg protein/mL) were added to 
pre-warmed buffer. The absorbance was monitored at λ = 
540 nm for 30 min at 30°C with orbital shaking (EPOCH® 
microplate reader; Agilent Technologies, Santa Clara, CA, 
USA). Primary and final absorbance difference (ΔOD) was 
calculated (28, 105, 115).

Renal tissue and isolated mitochondrial 
glutathione content
The reduced (GSH) and oxidized (GSSG) glutathione 
content in the kidneys of UUO mice was measured using 
the high-performance liquid chromatography (HPLC) 
method based on derivatization with dinitrofluorobenzene  

(DNFB) (3, 116, 117). An amine column (NH2, 25-cm 
 Bischoff chromatography; Leonberg, Germany) was used 
as a stationary phase (118). Buffer A (acetate buffer:water; 
1:4 v/v) and buffer B (methanol:water; 4:1 v/v) were mobile 
phases. Gradient method with a regular increase of buffer B 
to 95% in 30 min was used, and the flow rate was 1 mL/min 
(119). The ultraviolet (UV) detector was set at λ = 254 nm.

Mitochondrial ATP content
The previously described HPLC protocol assessed mito-
chondrial ATP level (120, 121). Briefly, isolated mitochon-
dria (0.5-mg protein/mL) were treated with ice-cooled 0.2-M 
perchloric acid, incubated in ice (5 min) and centrifuged (10 
min, 17,000 ×g, 4ºC). The supernatant was treated with an 
equivalent volume of ice-cooled 1-M KOH solution. Sam-
ples were filtered and injected (30 µL) into an HPLC system 
consisting of an LC-18 column (µ-Bondapak, 15 cm). The 
mobile phase comprised KH2PO4 (215 mM), tertiary butyl 
ammonium sulfate (2.3 mM), KOH (1 M, 0.4%), and aceto-
nitrile (4% v:v). The constant flow rate was 1 mL/min, and 
the UV detector was set at λ = 254 nm (5).

Tissue histopathology and organ weight index
Kidney samples were fixed in buffered formalin (10% w:v 
formaldehyde in 0.1-mM phosphate buffer, pH = 7.4). Then, 
paraffin-embedded kidney sections (5 µm) were prepared 
and stained with hematoxylin and eosin (H&E) (122). Renal 
histopathological changes in UUO model were scored based 
on the previously reported following protocol: score 0, none; 
score 0.5, <10%; score 1, 10–25%; score 2, 25–50%; score 
3, 50–75%, and score 4, >75% (123). Masson’s trichrome 
staining determined fibrotic kidney changes in UUO (21). 
 Periodic acid–Schiff  (PAS) staining was applied to assess 
kidney cast formation. A pathologist analyzed samples 
blindly. Kidney weight index was measured as follows:

Wet organ weight (g)Organ weight index = ×100 (95)
Whole body weight (g)

Statistical analysis
Data were presented as mean ± SD. Data comparison was 
accomplished by one-way analysis of variance (ANOVA) 
with post hoc Tukey’s multiple comparison test. The normal-
ity of data sets was assessed by Kolmogorov–Smirnov test. 
Scores for histopathological changes in renal tissue were 
presented as median and quartiles for five random scores. 
The analysis of tissue histopathological alterations was per-
formed by the Kruskal–Wallis test, followed by the Mann–
Whitney U test. P < 0.05 was considered significant.
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the right kidney of UUO mice (UUO-RK) was compared 
with that of the sham-operated group (Figure 3).

Renal tissue histopathological assessments revealed signif-
icant interstitial inflammation, tubular atrophy, and tissue 
necrosis on different days post-UUO surgery (Figure 4 and 
Table 1). A mild inflammatory response was also apparent 
only in the right kidney of UUO mice (UUO-RK) on day 
21 after UUO surgery (Table 1). Markers of kidney fibrosis 
were also evaluated in both sham-operated and UUO mice 
(Figure 5). Collagen deposition was significantly elevated 
in the kidneys of UUO mice than in the kidneys of sham- 
operated mice (Figure 5). Renal tissue hydroxyproline con-
tent was also considerably increased in UUO mice (Figure 
5). MPO enzyme activity as an index of tissue inflammation 
was also significantly higher than in the control animals at 
various time intervals post-UUO surgery (Figure 5).

Periodic acid–Schiff  staining of renal tissue revealed signif-
icant cast formation in UUO mice (Figure 6). It was discov-
ered that the number of kidney casts was time-dependently 
increased in the kidney after UUO surgery (Figure 6).

Discussion
Acute kidney injury is a severe clinical complication requir-
ing restricted and emergent interventions (1, 2). Determi-
nation of the mechanisms involved in the pathogenesis of 
the diseases is a critical step in identifying and developing 
therapeutic targets. UUO is a model investigated widely 
for evaluating the modality of renal injury. Inflammatory 

Results
Kidney weight index was significantly decreased in UUO 
mice after 7, 14, and 21 days of surgery (Figure 1). No sig-
nificant changes were recorded in the right kidney of UUO 
mice (UUO-RK), compared to the sham-operated group 
(Figure 1).

Plasma blood urea nitrogen (BUN) and creatinine levels 
as biomarkers of renal injury were significantly elevated at 
different time points of post-ureteral obstruction (Figure 1). 
On the other hand, oxidative stress markers were altered in 
both sham-operated and UUO model (Figure 2). A time- 
dependent increase in renal tissue ROS, lipid peroxidation, 
protein carbonylation, and increased GSSG levels was evi-
dent in UUO mice (Figure 2). Moreover, renal antioxidant 
capacity reduced GSH content and GSH–GSSG ratio was 
significantly decreased at different time intervals after UUO 
surgical procedure in a time-dependent manner (Figure 2). 
No significant changes in renal biomarkers of oxidative stress 
were recorded in the right kidney of UUO mice (UUO-RK), 
compared to the sham-operated group (Figure 2).

A significant decrease in mitochondrial dehydrogenase 
activity and ATP levels was evident in the kidney of UUO 
model (Figure 3). On the other hand, severe mitochondrial 
permeabilization and depolarization were also detected in 
mitochondria isolated from UUO mice in a time-dependent 
manner (Figure 3). The GSH reservoirs were also depleted, 
and the GSH–GSSG ratio decreased considerably in the 
mitochondria isolated from UUO mice (Figure 3). No signif-
icant changes in mitochondrial indices were discovered when 
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Figure 3: Mitochondrial indices in the kidney of unilateral ureter obstruction (UUO) mice. UUO-RK: Right kidney of UUO model. 
Data are presented as mean ± SD (n = 5). Groups with different alphabetical superscripts are significantly different (P < 0.05).
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Control

3 7 14 21

UUO-RK

Figure 4: Renal histopathological changes in unilateral ureter obstructed (UUO) mice. Numbers (3, 7, 14, 21) indicate days after 
the UUO surgery. Inflammatory cell infiltration (yellow arrows) and tubular atrophy (green arrows) were prominent histopatho-
logical changes in UUO mice. UUO-RK: Right kidney of UUO model. Scale bar = 100 µm.

Table 1: Renal histopathological alterations in unilateral ureter obstruction (UUO) mice.

Treatments Glomerular Damage Tubular Damage Inflammation

Control 0 (0, 0)a 0 (0, 0)a 0 (0, 0)a

UU-RK 0 (0, 0)a 0 (0, 0)a 0.5 (0, 1)a

3 days after UUO 2 (1, 2)b 2 (2, 2)b 3 (3, 3)d

7 days after UUO 3 (2, 3)d 3 (3, 3)d 4 (4, 4)e

14 days after UUO 3 (3, 3)d 4 (4, 4)e 4 (4, 4)e

21 days after UUO 4 (4, 4)e 4 (4, 4)e 4 (4, 4)e

Data are presented as median and quartiles for five pictures/groups.
Data sets with different alphabetical superscripts are significantly different (P < 0.05).
Renal histopathological changes in UUO model were scored based on a protocol described by Li et al. (2019) in the materials 
and methods section (123). UU-RK: Right kidney of UUO mice.

response, mechanical stress, and oxidative stress are com-
monly assessed in the UUO model of renal injury. On the 
other hand, there is no report on the role of mitochondrial 
impairment in cell death and organ injury in UUO model. In 
the current study, we discovered that severe oxidative stress, 

mitochondrial impairment, inflammation, and renal tissue 
histopathological alterations occurred in the kidney of UUO 
model. These findings demonstrated essential role of mito-
chondrial function disturbances and oxidative stress in the 
pathogenesis of renal injury in UUO model.
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Figure 5: Renal fibrotic changes, collagen deposition (blue arrow), and hydroxyproline content in the unilateral ureter obstruc-
tion (UUO) model (Trichrome stain ×200). Numbers on histopathological pictures (3, 7, 14, 21) indicate days after UUO sur-
gery. UUO-RK: Right kidney of UUO model. Data for fibrotic area, hydroxyproline content, myeloperoxidase activity, and 
tubulointerstitial injury score are given as mean ± SD (n = 5). Columns with various alphabetical superscripts are significantly 
different (P < 0.05). Scale bar = 100 µm.

As mentioned, identifying the cellular and molecular 
mechanisms involved in the pathogenesis of diseases is a crit-
ical step in developing therapeutic strategies. In this context, 
complications, such as prostatic hyperplasia and renal stones, 
could lead to urinary obstruction (124, 125). Although sur-
gical intervention is an ultimate and promising therapeutic 
option for this condition, finding organ injury mechanisms 
could help develop pharmacological or ancillary treatments.

In the current study, we investigated the role of oxidative 
stress and mitochondrial impairment and their interconnec-
tion in the pathogenesis of AKI in an animal model. Pre-
vious evidence indicated the role of oxidative stress and its 
associated complications in UUO model (126–128). It was 
discovered that oxidative stress markers, such as ROS for-
mation and damage to cellular components (e.g., lipids), 

occurred in UUO model (126–128). Moreover, it was discov-
ered that antioxidant mechanisms in renal tissues were sig-
nificantly impaired in UUO model (126, 127). However, no 
specific source(s) for ROS was identified in UUO model yet. 
In the current study, we determined that oxidative stress bio-
markers were significantly elevated in the kidneys of UUO 
mice (Figure 3). Moreover, we tried to delineate a connec-
tion between oxidative stress and potential sources of ROS 
formation in UUO model. In this regard, we investigated 
the relation between inflammatory response, mitochondrial 
impairment, and oxidative stress in the UUO model of AKI.

An interesting point was the interconnection between 
mitochondrial impairment and oxidative stress  (Figure  7). 
It is well known that mitochondria are the primary 
source of intracellular ROS formation. An average level 
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Figure 6: Cast formation in the kidney of unilateral ureter obstruction (UUO) model (periodic acid–Schiff  [PAS] stain ×400). 
No significant cast formation was detected in the sham-operated group or right kidney of UUO model. HPFs: high power fields. 
Data for renal cast formation are presented as mean ± SD (n = 5). Columns with various alphabetical superscripts are signifi-
cantly different (P < 0.05). Scale bar = 100 µm.
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Figure 7: Schematic presentation of the central role of oxidative stress and mitochondrial impairment in the pathogenesis of uni-
lateral ureter obstruction (UUO) model of acute renal injury. Oxidative stress and mitochondrial injury are two mechanistically 
interrelated events. ROS: reactive oxygen species; mPT: mitochondrial permeability transition; ATP: adenosine triphosphate; 
ΔΨ: mitochondrial membrane potential.
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of mitochondrial-mediated ROS formation could act as 
signaling molecules essential for normal physiological 
 processes  (20). However, the mitochondrial-mediated ROS 
level increased dramatically if  the mitochondrial function 
was impaired (20, 101). In the current UUO model, accumu-
lating potently cytotoxic molecules routinely excreted from 
urine could affect mitochondrial function and lead to cyto-
toxicity and organ injury.

Previous studies revealed that inflammatory response 
is essential for renal injury in UUO model (128, 129). In 
the current study, we determined that the accumulation 
of inflammatory cells increased significantly at different 
time intervals after UUO surgery (Figure 4 and Table 1). 
The cytokines released by these cells could substantially 
cause oxidative stress in this model. On the other hand, 
it was discovered that cytokines, such as tumor necrosis 
 factor-α (TNF-α), directly affected mitochondrial function 
(130,  131). These cytokines were also able to induce tissue 
fibrosis, finally leading to organ failure. It should also be 
mentioned that oxidative stress and inflammation are two 
interrelated processes that could lead to tissue damage (132, 
133). The molecular connection between oxidative stress and 
inflammation is complicated and includes several signaling 
pathways (132, 133). The transcription factors nuclear factor 
erythroid 2-related factor 2 (Nrf-2) and nuclear factor kappa 
B (NF-κB) are critical oxidative stress and inflammation 
regulators, respectively (3, 6). Hence, more studies on these 
molecular pathways could provide viable therapeutic options 
to combat renal injury (e.g., in UUO model). Therefore, fur-
ther research is needed to uncover this hypothesis.

Novel therapeutic options, such as mitochondrial replace-
ment therapy, could be crucial in the future therapeutic strat-
egies to control renal failure with different etiologies. These 
organelles provide enough energy for cell survival, prevent 
electrolyte imbalance, and provide enough time for basic 
organ transplantation strategies.

It has been well-documented that oxidative stress and the 
subsequent activation of extracellular matrix-producing cells 
(collagen deposition) are interconnected. Hence, a possible 
mechanism for fibrotic change in the current UUO model 
could be associated with oxidative stress (e.g., mitochondrial- 
mediated ROS formation). Kidney tissue also contains 
numerous mitochondria, guaranteeing the reabsorption 
of essential chemicals from urine (29). This process is an 
energy- dependent reaction. Hence, changes in renal mito-
chondrial function could lead to crucial electrolyte waste and 
serum electrolyte imbalance (8, 134, 135). Therefore, prior 
to surgical interventions, it is vital to preserve mitochondrial 
function and prevent kidney injury. Cellular mitochondria 
play a critical role in cell death (136).

Various studies revealed the significance of oxidative stress 
in UUO model (126, 127). Hence, our data on the role of oxi-
dative stress markers are in line with these studies  (Figure 7). 

More importantly, we found that renal mitochondrial indices 
of functionality were significantly hampered in UUO model. 
This represents mitochondrial function as a key mechanism 
in the pathogenesis of this complication (Figure 7). Recently, 
we tested different safe and clinically applicable agents with 
antioxidant and mitochondrial protecting agents in various 
experimental models or patients with renal disorders (5, 42, 
91, 137–139). Some of these compounds even underwent 
clinical trials for different types of renal injury and nephrop-
athy. Further studies are warranted to reveal the clinical 
significance of these data in complications leading to ureter 
obstruction and renal injury (e.g., prostate hyperplasia or 
kidney stones).
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