Wasting Away with Cirrhosis: A Review of Hepatic Sarcopenia

Main Article Content

Ernesto Robalino Gonzaga
Austin Andrew
Freeman Jan George

Keywords

sarcopenia, cirrhosis, wasting, end-stage liver disease, muscle

Abstract

The complications of decompensated cirrhosis are well documented and include variceal bleeding, fluid retention, and hepatic encephalopathy. A less well recognized complication of cirrhosis is muscle wasting or sarcopenia. It is now recognized to have a significant impact on patient survival, especially in patients who are awaiting liver transplantation. An understanding of the pathophysiology of muscle protein homeostasis has led to several proposed mechanisms of sarcopenia and the potential to reverse muscle loss. This review discusses the potential mechanisms of sarcopenia and highlights the possible future means of reversing sarcopenia.

Downloads

Download data is not yet available.
Abstract 451 | PDF Downloads 120 HTML Downloads 209 XML Downloads 35

References

1. Tsochatzis E, Bosch J, Burroughs A. Liver cirrhosis. Lancet. 2014;383(9930):1749–61. https://doi.org/10.1016/S0140-6736(14)60121-5
2. Bernal W, Martin-Mateos R, Lipcsey M, Tallis C, Woodsford K, Mcphail M, et al. Aerobic capacity during cardiopulmonary exercise testing and survival with and without liver transplantation for patients with chronic liver disease. Liver Transplantation. 2013;20(1):54–62. https://doi.org/10.1002/lt.23766
3. Dasarathy S. Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle. 2012;3(4):225–37. https://doi.org/10.1007/s13539-012-0069-3
4. Kim G, Kang S, Kim M, Baik S. Prognostic value of sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis. PLoS One. 2017;12(10):e0186990. https://doi.org/10.1371/journal.pone.0186990
5. Benjamin J, Shasthry V, Kaal C, Anand L, Bhardwaj A, Pandit V, et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: A computed tomography based study. Liver Int. 2017;37(11):1668–74. https://doi.org/10.1111/liv.13509
6. Bryant R, Ooi S, Schultz C, Goess C, Grafton R, Hughes J, et al. Low muscle mass and sarcopenia: Common and predictive of osteopenia in inflammatory bowel disease. Aliment Pharmacol Therapeut. 2015;41(9):895–906. https://doi.org/10.1111/apt.13156
7. Ito N, Ruegg U, Takeda S. ATP-induced increase in intracellular calcium levels and subsequent activation of mTOR as regulators of skeletal muscle hypertrophy. Int J Mol Sci. 2018;19(9):2804. https://doi.org/10.3390/ijms19092804
8. Drummond M, Dreyer H, Fry C, Glynn E, Rasmussen B. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol. 2009;106(4):1374–84. https://doi.org/10.1152/japplphysiol.91397.2008
9. Castonguay R, Lachey J, Wallner S, Strand J, Liharska K, Watanabe A, et al. Follistatin-288-Fc fusion protein promotes localized growth of skeletal muscle. J Pharmacol Exp Therapeut. 2018;368(3):435–45. https://doi.org/10.1124/jpet.118.252304
10. Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan M, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF- B-mediated mechanism. Proc Natl Acad Sci. 2013;110(45):18162–7. https://doi.org/10.1073/pnas.1317049110
11. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 2017;8(6):915–25. https://doi.org/10.1002/jcsm.12212
12. Kumar A, Davuluri G, Silva R, Engelen M, Ten Have G, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65(6):2045–58. https://doi.org/10.1002/hep.29107
13. Davuluri G, Krokowski D, Guan B, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65(5):929–37. https://doi.org/10.1016/j.jhep.2016.06.004
14. Dasarathy S, Hatzoglou M. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care. 2018;21(1):30–6. https://doi.org/10.1097/MCO.0000000000000426
15. Anda S, Zach R, Grallert B. Activation of Gcn2 in response to different stresses. PLoS One. 2017;12(8):e0182143 https://doi.org/10.1371/journal.pone.0182143
16. Glass C, Hipskind P, Tsien C, Malin S, Kasumov T, Shah S, et al. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: A prospective controlled study. J Appl Physiol. 2013;114(5):559–65. https://doi.org/10.1152/japplphysiol.01042.2012
17. Breuillard C, Cynober L, Moinard C. Citrulline and nitrogen homeostasis: An overview. Amino Acids. 2015;47(4):685–91. https://doi.org/10.1007/s00726-015-1932-2
18. Liu W, Thomas S, Asa S, Gonzalez-Cadavid N, Bhasin S, Ezzat S. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metabol. 2003;88(11):5490–6. https://doi.org/10.1210/jc.2003-030497
19. Lakshman K, Bhasin S, Corcoran C, Collins-Racie L, Tchistiakova L, Forlow S, et al. Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol Cell Endocrinol. 2009;302(1):26–32. https://doi.org/10.1016/j.mce.2008.12.019
20. Handelsman D, Strasser S, McDonald J, Conway A, McCaughan G. Hypothalamic-pituitary-testicular function in end-stage non-alcoholic liver disease before and after liver transplantation. Clin Endocrinol. 1995;43(3):331–7. https://doi.org/10.1111/j.1365-2265.1995.tb02040.x
21. Dasarathy S, Mullen K, Dodig M, Donofrio B, McCullough A. Inhibition of aromatase improves nutritional status following portacaval anastomosis in male rats. J Hepatol. 2006;45(2):214–20. https://doi.org/10.1016/j.jhep.2006.02.016
22. Lang C, Frost R, Nairn A, MacLean D, Vary T. TNF-? impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metabol. 2002;282(2):E336–47. https://doi.org/10.1152/ajpendo.00366.2001
23. Keller C, Fokken C, Turville S, Lünemann A, Schmidt J, Münz C, et al. TNF-? induces macroautophagy and regulates MHC class ii expression in human skeletal muscle cells. J Biol Chem. 2010;286(5):3970–80. https://doi.org/10.1074/jbc.M110.159392
24. Fernández-Celemín L, Pasko N, Blomart V, Thissen J. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-?. Am J Physiology Endocrinol Metabol. 2002;283(6): E1279–90. https://doi.org/10.1152/ajpendo.00054.2002
25. Peng S, Plank L, McCall J, Gillanders L, McIlroy K, Gane E. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: A comprehensive study. Am J Clin Nutr. 2007;85(5):1257–66. https://doi.org/10.1093/ajcn/85.5.1257
26. Prado C, Lieffers J, McCargar L, Reiman T, Sawyer M, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008;9(7):629–35. https://doi.org/10.1016/S1470-2045(08)70153-0
27. Andersson K, Salomon J, Goldie S, Chung R. Cost effectiveness of alternative surveillance strategies for hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2008;6(12):1418–24. https://doi.org/10.1016/j.cgh.2008.08.005
28. Tandon P, Low G, Mourtzakis M, Zenith L, Myers R, Abraldes J, et al. A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14(10):1473–80.e3. https://doi.org/10.1016/j.cgh.2016.04.040
29. Dasarathy S. Nutrition and alcoholic liver disease. Clin Liver Dis. 2016;20(3):535–50. https://doi.org/10.1016/j.cld.2016.02.010
30. Plauth M, Bernal W, Dasarathy S, Merli M, Plank L, Schütz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38(2):485–521. https://doi.org/10.1016/j.clnu.2018.12.022
31. Iwasa M, Iwata K, Hara N, Hattori A, Ishidome M, Sekoguchi-Fujikawa N, et al. Nutrition therapy using a multidisciplinary team improves survival rates in patients with liver cirrhosis. Nutrition. 2013;29(11–12):1418–21. https://doi.org/10.1016/j.nut.2013.05.016
32. Rivera Irigoin R, Abilés J. Soporte nutricional en el paciente con cirrosis hepática. Gastroenterología y Hepatología. 2012;35(8):594–601. https://doi.org/10.1016/j.gastrohep.2012.03.001
33. Merli M, Berzigotti A, Zelber-Sagi S, Dasarathy S, Montagnese S, Genton L, et al. EASL clinical practice guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93. https://doi.org/10.1016/j.jhep.2018.06.024
34. McDaniel J, Davuluri G, Hill E, Moyer M, Runkana A, Prayson R, et al. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol. 2016;310(3):G163–70. https://doi.org/10.1152/ajpgi.00322.2015
35. Dietrich R, Bachmann C, Lauterburg B. Exercise-induced hyperammonemia in patients with compensated chronic liver disease. Scand J Gastroenterol. 1990;25(4):329–34. https://doi.org/10.3109/00365529009095494
36. Berzigotti A, Albillos A, Villanueva C, Genescá J, Ardevol A, Augustín S, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: The SportDiet study. Hepatology. 2017;65(4):1293–305. https://doi.org/10.1002/hep.28992
37. Hiraoka A, Michitaka K, Kiguchi D, Izumoto H, Ueki H, Kaneto M, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1416–23. https://doi.org/10.1097/MEG.0000000000000986
38. Campollo, O., Sprengers, D., McIntyre, N. The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev Invest Clin. 1992; 44(4):513–18.
39. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol. 2018;3:47–47. https://doi.org/10.21037/tgh.2018.07.06
40. Gluud L, Dam G, Les I, Marchesini G, Borre M, Aagaard N, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2015;(2): CD001939. https://doi.org/10.1002/14651858.CD001939.pub4
41. Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3(7):705–13. https://doi.org/10.1016/S1542-3565(05)00017-0
42. Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: A double-blind, randomized trial. Gastroenterology. 2003;124(7):1792–801. https://doi.org/10.1016/S0016-5085(03)00323-8
43. Les I, Doval E, García-Martínez R, Planas M, Cárdenas G, Gómez P, et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: A randomized study. Am J Gastroenterol. 2011;106(6):1081–8. https://doi.org/10.1038/ajg.2011.9
44. Zhang P, McGrath B, Reinert J, Olsen D, Lei L, Gill S, et al. The GCN2 eIF2 kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol. 2002;22(19):6681–8. https://doi.org/10.1128/MCB.22.19.6681-6688.2002
45. Anthony J, Yoshizawa F, Anthony T, Vary T, Jefferson L, Kimball S. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130(10):2413–19. https://doi.org/10.1093/jn/130.10.2413
46. Anthony T, Anthony J, Yoshizawa F, Kimball S, Jefferson L. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr. 2001;131(4):1171–6. https://doi.org/10.1093/jn/131.4.1171
47. Dardevet D, Sornet C, Balage M, Grizard J. Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr. 2000;130(11):2630–5. https://doi.org/10.1093/jn/130.11.2630
48. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have G, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61(6):2018–29. https://doi.org/10.1002/hep.27717
49. Marcell T, Harman S, Urban R, Metz D, Rodgers B, Blackman M. Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. Am J Physiol Endocrinol Metabol. 2001;281(6):E1159–64. https://doi.org/10.1152/ajpendo.2001.281.6.E1159
50. Moctezuma-Velázquez C, Low G, Mourtzakis M, Ma M, Burak K, Tandon P, et al. Association between low testosterone levels and sarcopenia in cirrhosis: A cross-sectional study. Ann Hepatol. 2018;17(4):615–23. https://doi.org/10.5604/01.3001.0012.0930
51. Picardi A, de Oliveira A, Muguerza B, Tosar A, Quiroga J, Castilla-Cortázar I, et al. Low doses of insulin-like growth factor-I improve nitrogen retention and food efficiency in rats with early cirrhosis. J Hepatol. 1997;26(1):191–202. https://doi.org/10.1016/S0168-8278(97)80026-8
52. Lang C, Frost R, Svanberg E, Vary T. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol-fed rats. Am J Physiol Endocrinol Metabol. 2004;286(6): E916–26. https://doi.org/10.1152/ajpendo.00554.2003
53. Pratiwi Y, Lesmana R, Goenawan H, Sylviana N, Setiawan I, Tarawan V, et al. Nutmeg extract increases skeletal muscle mass in aging rats partly via IGF1-AKT-mTOR pathway and inhibition of autophagy. Evid Base Compl Alternative Med. 2018;2018:1–8. https://doi.org/10.1155/2018/2810840
54. Yurci A, Yucesoy M, Unluhizarci K, Torun E, Gursoy S, Baskol M, et al. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin Res Hepatol Gastroenterol. 2011;35(12):845–54. https://doi.org/10.1016/j.clinre.2011.09.005
55. Sinclair M, Grossmann M, Hoermann R, Angus P, Gow P. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J Hepatol. 2016;65(5):906–13. https://doi.org/10.1016/j.jhep.2016.06.007
56. Tsien C, Garber A, Narayanan A, Shah S, Barnes D, Eghtesad B, et al. Post-liver transplantation sarcopenia in cirrhosis: A prospective evaluation. J Gastroenterol Hepatol. 2014;29(6):1250–7. https://doi.org/10.1111/jgh.12524
57. Dasarathy S. Posttransplant sarcopenia: An underrecognized early consequence of liver transplantation. Dig Dis Sci. 2013;58(11):3103–11. https://doi.org/10.1007/s10620-013-2791-x
58. Pirruccello-Straub M, Jackson J, Wawersik S, Webster M, Salta L, Long K, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep. 2018;8:2292. https://doi.org/10.1038/s41598-018-20524-9
59. St. Andre M, Johnson M, Bansal P, Wellen J, Robertson A, Opsahl A, et al. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skeletal Muscle. 2017;7(1):25. https://doi.org/10.1186/s13395-017-0141-y
60. FastStats [Internet]. Cdc.gov. 2019 [cited 2019 Mar 11]. Available from: https://www.cdc.gov/nchs/fastats/liver-disease.htm
61. Kittiskulnam P, Chertow G, Carrero J, Delgado C, Kaysen G, Johansen K. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int. 2017;92(1):238–47. https://doi.org/10.1016/j.kint.2017.01.024
62. Tandon P, Ney M, Irwin I, Ma M, Gramlich L, Bain V, et al. Severe muscle depletion in patients on the liver transplant wait list: Its prevalence and independent prognostic value. Liver Transplant. 2012;18(10):1209–16. https://doi.org/10.1002/lt.23495
63. Kalafateli M, Mantzoukis K, Choi Yau Y, Mohammad A, Arora S, Rodrigues S, et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for end-stage liver disease score. J Cachexia Sarcopenia Muscle. 2016;8(1):113–21. https://doi.org/10.1002/jcsm.12095
64. Engelmann C, Schob S, Nonnenmacher I, Werlich L, Aehling N, Ullrich S, et al. Loss of paraspinal muscle mass is a gender-specific consequence of cirrhosis that predicts complications and death. Aliment Pharmacol Therapeut. 2018;48(11–12):1271–81. https://doi.org/10.1111/apt.15026