The Interplay of Iron and Lipid Homeostasis in Non-Alcoholic Fatty Liver Disease

Main Article Content

Clinton J. Kidman https://orcid.org/0000-0003-3408-1171
Cyril D.S. Mamotte https://orcid.org/0000-0003-1831-3921
Keea R. Inder-Smith
Mark J. Tobin https://orcid.org/0000-0003-1862-0649
Mark J. Hackett https://orcid.org/0000-0002-3296-7270
Ross M. Graham https://orcid.org/0000-0002-9336-3999

Keywords

cholesterol, iron metabolism, lipid metabolism, non-alcoholic fatty liver disease, triglycerides

Abstract

The liver is essential for numerous metabolic functions and is the primary site of iron storage and regulation in addition to maintaining critical functions in lipid metabolism. Both iron deficiency and overload have been demonstrated as being involved with metabolic dysfunction; hence, tight regulation of iron absorption is essential to maintain health. Approximately one-third of individuals suffering from non-alcoholic fatty liver disease have elevated hepatic iron concentrations, with increased iron associated with increased disease severity, suggesting a convergence in dysregulation between lipid and iron metabolism. Increasingly, the literature is demonstrating, using a myriad of model organisms and iron-loading methods, that iron loading induces dysregulation in multiple aspects of hepatic lipid metabolism. However, the molecular mechanisms involved, and their subsequent effects on human diseases, are unclear. As iron is a fundamental component of many enzymes and proteins involved in lipid metabolism and is involved in the production of free radicals and oxidative stress, the mechanisms are numerous. In this review, we examine and summarise the dysregulation that iron loading elicits on hepatic lipid availability, de novo synthesis, catabolism, and export. We propose that understanding the interplay between iron and lipid metabolism holds the key to unlocking the complexities of disease development and progression, ultimately leading to improved therapeutic avenues.

Abstract 484 | PDF Downloads 190 HTML Downloads 0 XML Downloads 28

References

1. Srai SK, Sharp P. Proteins of iron homeostasis. In: Anderson GJ, McLaren GD, editors. Iron physiology and pathophysiology in humans. Totowa, NJ: Humana Press; 2012. pp. 3–25. 10.1007/978-1-60327-485-2_1

2. Muckenthaler MU, Lill R. Cellular iron physiology. In: Anderson GJ, McLaren GD, editors. Iron physiology and pathophysiology in humans. Totowa, NJ: Humana Press; 2012. pp. 27–50. 10.1007/978-1-60327-485-2_2

3. Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017;9:1483–500. 10.1039/C7MT00116A

4. Levi S, Rovida E. The role of iron in mitochondrial function. Biochim Biophys Acta. 2009;1790:629–36. 10.1016/j.bbagen.2008.09.008

5. Liochev SI, Fridovich I. Superoxide and iron: Partners in crime. IUBMB Life. 1999;48:157–61. 10.1080/713803492

6. Wallace DF. The regulation of iron absorption and homeostasis. Clin Biochem Rev. 2016;37:51–62.

7. Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, et al. Body iron excretion in man: A collaborative study. Am J Med. 1968;45:336–53. 10.1016/0002-9343(68)90069-7

8. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3. 10.1126/science.1104742

9. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA. 2001;98:8780–85. 10.1073/pnas.151179498

10. Corradini E, Buzzetti E, Pietrangelo A. Genetic iron overload disorders. Mol Aspects Med. 2020;75:100896. 10.1016/j.mam.2020.100896

11. Swanson CA. Iron intake and regulation: Implications for iron deficiency and iron overload. Alcohol 2003;30:99–102. 10.1016/S0741-8329(03)00103-4

12. Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. NAFLD and hyperinsulinemia are major determinants of serum ferritin levels. J Hepatol. 2007;46:700–7. 10.1016/j.jhep.2006.09.018

13. Mendler M-H, Turlin B, Moirand R, Jouanolle A-M, Sapey T, Guyader D, et al. Insulin resistance-associated hepatic iron overload. Gastroenterology. 1999;117:1155–63. 10.1016/S0016-5085(99)70401-4

14. Turlin B, Mendler MH, Moirand R, Guyader D, Guillygomarc’h A, Deugnier Y. Histologic features of the liver in insulin resistance-associated iron overload: A study of 139 patients. Am J Clin Pathol. 2001;116:263–70. 10.1309/WWNE-KW2C-4KTW-PTJ5

15. Nelson JE, Klintworth H, Kowdley KV. Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep. 2012;14:8–16. 10.1007/s11894-011-0234-4

16. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. 2016;20:205–14. 10.1016/j.cld.2015.10.001

17. Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest. 1996;97:2081–91. 10.1172/JCI118645

18. Cohen DE, Fisher EA. Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Sem Liver Dis. 2013;33:380–8. 10.1055/s-0033-1358519

19. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology. 2004;40:1387–95. 10.1002/hep.20466

20. Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16:5286–96. 10.3748/wjg.v16.i42.5286

21. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertension Rep. 2018;20:12. 10.1007/s11906-018-0812-z

22. Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity transition: Stages of the global epidemic. Lancet Diab Endocrinol. 2019;7:231–40. 10.1016/S2213-8587(19)30026-9

23. Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis. 2010;28:155–61. 10.1159/000282080

24. Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis—An update. Front Pharmacol. 2014;5:124. 10.3389/fphar.2014.00124

25. Van Wyk CP, Linder-Horowitz M, Munro HN. Effect of iron loading on non-heme iron compounds in different liver cell populations. J Biol Chem. 1971;246:1025–31. 10.1016/S0021-9258(18)62426-3

26. Young SP, Roberts S, Bomford A. Intracellular processing of transferrin and iron by isolated rat hepatocytes. Biochem J. 1985;232:819–23. 10.1042/bj2320819

27. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51:2348–54. 10.2337/diabetes.51.8.2348

28. Nelson JE, Wilson L, Brunt EM, Yeh MM, Kleiner DE, Unalp-Arida A, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology. 2011;53:448–57. 10.1002/hep.24038

29. Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, et al. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev. 2009;18:424–32. 10.1158/1055-9965.EPI-08-0725

30. Brown KE, Dennery PA, Ridnour LA, Fimmel CJ, Kladney RD, Brunt EM, et al. Effect of iron overload and dietary fat on indices of oxidative stress and hepatic fibrogenesis in rats. Liver Int. 2003;23:232–42. 10.1034/j.1600-0676.2003.00832.x

31. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: Mechanisms and analysis. Chem Rev. 2011;111:5944–72. 10.1021/cr200084z

32. Chevion M. A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Radic Biol Med. 1988;5:27–37. 10.1016/0891-5849(88)90059-7

33. Violi F, Marino R, Milite MT, Loffredo L. Nitric oxide and its role in lipid peroxidation. Diabetes/Metab Res Rev. 1999;15:283–8. 10.1002/(SICI)1520-7560(199907/08)15:4<283::AID-DMRR42>3.0.CO;2-U

34. Eder SK, Feldman A, Strebinger G, Kemnitz J, Zandanell S, Niederseer D, et al. Mesenchymal iron deposition is associated with adverse long-term outcome in non-alcoholic fatty liver disease. Liver Int. 2020;40:1872–82. 10.1111/liv.14503

35. Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 2016;310:G117–27. 10.1152/ajpgi.00246.2015

36. Silva M, Guerra JFdC, Sampaio AFS, Lima WGd, Silva ME, Pedrosa ML. Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. Bio Med Res Int. 2015;2015:272617. 10.1155/2015/272617

37. Fisher AL, Srole DN, Palaskas NJ, Meriwether D, Reddy ST, Ganz T, et al. Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem. 2021;297:101156. 10.1016/j.jbc.2021.101156

38. Rodriguez A, Luukkaala T, Fleming RE, Britton RS, Bacon BR, Parkkila S. Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum. PLoS One 2009;4:e7212. 10.1371/journal.pone.0007212

39. Bai S, Luo W, Liu H, Zhang K, Wang J, Ding X, et al. Effects of high dietary iron on the lipid metabolism in the liver and adipose tissue of male broiler chickens. Anim Feed Sci Technol. 2021;282:115131. 10.1016/j.anifeedsci.2021.115131

40. Graham RM, Chua AC, Carter KW, Delima RD, Johnstone D, Herbison CE, et al. Hepatic iron loading in mice increases cholesterol biosynthesis. Hepatology. 2010;52:462–71. 10.1002/hep.23712

41. Kidman CJ, Mamotte CDS, Eynaud MA, Reinhardt J, Vongsvivut J, Tobin MJ, et al. Tracking biochemical changes induced by iron loading in AML12 cells with synchrotron live cell, time-lapse infrared microscopy. Biochem J. 2021;478:1227–39. 10.1042/BCJ20200653

42. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51. 10.1172/JCI23621

43. Hagenfeldt L, Wahren J, Pernow B, Räf L. Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest. 1972;51:2324–30. 10.1172/JCI107043

44. Barrows BR, Parks EJ. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 2006;91:1446–52. 10.1210/jc.2005-1709

45. Xiao L, Luo G, Li H, Yao P, Tang Y. Dietary iron overload mitigates atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice: Role of dysregulated hepatic fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866:159004. 10.1016/j.bbalip.2021.159004

46. Kim J, Jia X, Buckett PD, Liu S, Lee C-H, Wessling-Resnick M. Iron loading impairs lipoprotein lipase activity and promotes hypertriglyceridemia. FASEB J. 2013;27:1657–63. 10.1096/fj.12-224386

47. Zhu M, Chen H, Zhou S, Zheng L, Li X, Chu R, et al. Iron oxide nanoparticles aggravate hepatic steatosis and liver injury in nonalcoholic fatty liver disease through BMP-SMAD-mediated hepatic iron overload. Nanotoxicology. 2021;15:761–78. 10.1080/17435390.2021.1919329

48. Wlazlo N, van Greevenbroek MMJ, Ferreira I, Jansen EHJM, Feskens EJM, van der Kallen CJH, et al. Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Diab Care. 2013;36:309–15. 10.2337/dc12-0505

49. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1–8. 10.1002/cphy.c170012

50. Zimmermann R, Strauss Juliane G, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–86. 10.1126/science.1100747

51. Kershaw EE, Hamm JK, Verhagen LAW, Peroni O, Katic M, Flier JS. Adipose triglyceride lipase: Function, regulation by insulin, and comparison with adiponutrin. Diabetes. 2006;55:148–57. 10.2337/diabetes.55.01.06.db05-0982

52. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97. 10.1016/j.plipres.2009.05.001

53. Katsumura M, Takagi S, Oya H, Tamura S, Saneyasu T, Honda K, et al. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice. Animal Sci J. 2017;88:1100–6. 10.1111/asj.12734

54. Romero AR, Mu A, Ayres JS. Adipose triglyceride lipase mediates lipolysis and lipid mobilization in response to iron-mediated negative energy balance. iScience. 2022;25:103941. 10.1016/j.isci.2022.103941

55. Folgueras AR, Freitas-Rodríguez S, Ramsay AJ, Garabaya C, Rodríguez F, Velasco G, et al. Matriptase-2 deficiency protects from obesity by modulating iron homeostasis. Nature Comm. 2018;9:1350. 10.1038/s41467-018-03853-1

56. Rumberger JM, Peters T, Jr., Burrington C, Green A. Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes. 2004;53:2535–41. 10.2337/diabetes.53.10.2535

57. Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metab Clin Exp. 2006;55:1042–5. 10.1016/j.metabol.2006.03.015

58. Ryan BJ, Van Pelt DW, Guth LM, Ludzki AC, Gioscia-Ryan RA, Ahn C, et al. Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women. Exp Physiol. 2018;103:1443–7. 10.1113/EP087283

59. Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22:8112–22. 10.3748/wjg.v22.i36.8112

60. Tang Y, Wang D, Zhang H, Zhang Y, Wang J, Qi R, et al. Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin. J Cell Physiol. 2021;236:7544–53. 10.1002/jcp.30391

61. Qiao L, Kinney B, Schaack J, Shao J. Adiponectin inhibits lipolysis in mouse adipocytes. Diabetes. 2011;60:1519–27. 10.2337/db10-1017

62. Wedellová Z, Dietrich J, Siklová-Vítková M, Kološtová K, Kováčiková M, Dušková M, et al. Adiponectin inhibits spontaneous and catecholamine-induced lipolysis in human adipocytes of non-obese subjects through AMPK-dependent mechanisms. Physiol Res. 2011;60(1):139–48. 10.33549/physiolres.931863

63. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Adiponectin gene expression is inhibited by β-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett. 2001;507:142–6. 10.1016/S0014-5793(01)02960-X

64. Simard JR, Kamp F, Hamilton JA. Measuring the adsorption of fatty acids to phospholipid vesicles by multiple fluorescence probes. Biophys J. 2008;94:4493–503. 10.1529/biophysj.107.121186

65. Anderson CM, Stahl A. SLC27 fatty acid transport proteins. Mol Aspects Med. 2013;34:516–28. 10.1016/j.mam.2012.07.010

66. Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: Alterations in hepatic lipid homeostasis. Gastroenterology. 2006;130:1245–58. 10.1053/j.gastro.2006.02.006

67. Martius G, Alwahsh SM, Rave-Fränk M, Hess CF, Christiansen H, Ramadori G, et al. Hepatic fat accumulation and regulation of FAT/CD36: An effect of hepatic irradiation. Int J Clin Exp Pathol. 2014;7:5379–92.

68. Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, et al. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab. 2010;299:E384–93. 10.1152/ajpendo.00226.2010

69. Mayneris-Perxachs J, Cardellini M, Hoyles L, Latorre J, Davato F, Moreno-Navarrete JM, et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome. 2021;9:104. 10.1186/s40168-021-01052-7

70. Wang Hz, Jiang X, Jieyu W, Zhang L, Huang J, Zhang Y, et al. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics. 2016;203(1):241–53. 10.1534/genetics.116.186742

71. Xiong H, Zhang C, Han L, Xu T, Saeed K, Han J, et al. Suppressed farnesoid X receptor by iron overload in mice and humans potentiates iron-induced hepatotoxicity. Hepatology. 2022;76:387–403. 10.1002/hep.32270

72. Wei Y, Zhao M, Yang F, Mao Y, Xie H, Zhou Q. Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci Rep. 2016;6:29110. 10.1038/srep29110

73. Allameh A, Hüttmann N, Charlebois E, Katsarou A, Gu W, Gkouvatsos K, et al. Hemojuvelin deficiency promotes liver mitochondrial dysfunction and predisposes mice to hepatocellular carcinoma. Comm Biol. 2022;5:153. 10.1038/s42003-022-03108-2

74. Smathers RL, Petersen DR. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum Genom. 2011;5:170. 10.1186/1479-7364-5-3-170

75. Bass NM. The cellular fatty acid binding proteins: Aspects of structure, regulation, and function. Int Rev Cytol. 1988;111:143–84. 10.1016/s0074-7696(08)61733-7

76. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res. 1999;40:1371–83. 10.1016/S0022-2275(20)33379-4

77. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–94. 10.1002/hep.20283

78. Sieber J, Jehle A. Free fatty acids and their metabolism affect function and survival of podocytes. Fronti Endocrinol. 2014;5:186. 10.3389/fendo.2014.00186

79. Sarkar-Banerjee S, Chowdhury S, Sanyal D, Mitra T, Roy SS, Chattopadhyay K. The role of intestinal fatty acid binding proteins in protecting cells from fatty acid induced impairment of mitochondrial dynamics and apoptosis. Cell Physiol Biochem. 2018;51:1658–78. 10.1159/000495672

80. Murphy EJ, Prows DR, Stiles T, Schroeder F. Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids. 2000;35:729–38. 10.1007/s11745-000-0579-x

81. Wolfrum C, Buhlmann C, Rolf B, Börchers T, Spener F. Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1437:194–201. 10.1016/S1388-1981(99)00008-6

82. Koppe T, Patchen B, Cheng A, Bhasin M, Vulpe C, Schwartz RE, et al. Nicotinamide N-methyltransferase expression decreases in iron overload, exacerbating toxicity in mouse hepatocytes. Hepatol Comm. 2017;1:803–15. 10.1002/hep4.1083

83. Coppin H, Darnaud V, Kautz L, Meynard D, Aubry M, Mosser J, et al. Gene expression profiling of Hfe-/- liver and duodenum in mouse strains with differing susceptibilities to iron loading: Identification of transcriptional regulatory targets of Hfe and potential hemochromatosis modifiers. Genome Biol. 2007;8:R221. 10.1186/gb-2007-8-10-r221

84. Tan TCH, Crawford DHG, Jaskowski LA, Subramaniam VN, Clouston AD, Crane DI, et al. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Lab Invest. 2013;93:1295–312. 10.1038/labinvest.2013.121

85. van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol. 2017;28:241–7. 10.1097/MOL.0000000000000411

86. Brown MS, Goldstein JL. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J Clin Invest. 1983;72:743–7. 10.1172/JCI111044

87. Havel RJ. Functional activities of hepatic lipoprotein receptors. Annu Rev Physiol. 1986;48:119–34. 10.1146/annurev.ph.48.030186.001003

88. Prasnicka A, Lastuvkova H, Alaei Faradonbeh F, Cermanova J, Hroch M, Mokry J, et al. Iron overload reduces synthesis and elimination of bile acids in rat liver. Sci Rep. 2019;9:9780. 10.1038/s41598-019-46150-7

89. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: Structure, function, regulation, and role in disease. J Mol Med. 2002;80:753–69. 10.1007/s00109-002-0384-9

90. Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: Lipoprotein lipase-and CD36-mediated pathways. J Lipid Res. 2009;50:S86–90. 10.1194/jlr.R800085-JLR200

91. van Bennekum AM, Kako Y, Weinstock PH, Harrison EH, Deckelbaum RJ, Goldberg IJ, et al. Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. J Lipid Res 1999;40:565–74. 10.1016/S0022-2275(20)32461-5

92. Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr. 1996;16:523–57. 10.1146/annurev.nu.16.070196.002515

93. Mitsuyoshi H, Yasui K, Harano Y, Endo M, Tsuji K, Minami M, et al. Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res. 2009;39:366–73. 10.1111/j.1872-034X.2008.00464.x

94. Dorn C, Riener M-O, Kirovski G, Saugspier M, Steib K, Weiss TS, et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol. 2010;3:505–14.

95. Chakravarty B, Gu Z, Chirala Subrahmanyam S, Wakil Salih J, Quiocho Florante A. Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain. Proc Natl Acad Sci USA. 2004;101:15567–72. 10.1073/pnas.0406901101

96. Zhao S, Torres A, Henry Ryan A, Trefely S, Wallace M, Lee Joyce V, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 2016;17:1037–52. 10.1016/j.celrep.2016.09.069

97. Fernandez S, Viola JM, Torres A, Wallace M, Trefely S, Zhao S, et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 2019;27:2772–84. e2776. 10.1016/j.celrep.2019.04.112

98. Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990;265:1502–9. 10.1016/S0021-9258(19)40045-8

99. King MW. Lipids: Chapter 19: Fatty acid synthesis. In: King MW, editor. Integrative medical biochemistry examination and board review. New York, NY: McGraw-Hill Education, 2014. https://accesspharmacy.mhmedical.com/content.aspx?bookid=1696§ionid=111398959

100. Choi JS, Koh IU, Lee HJ, Kim WH, Song J. Effects of excess dietary iron and fat on glucose and lipid metabolism. J Nutr Biochem. 2013;24:1634–44. 10.1016/j.jnutbio.2013.02.004

101. Valenzuela R, Rincón-Cervera, MÁ Echeverría F, Barrera C, Espinosa A, Hernández-Rodas MC, et al. Iron-induced pro-oxidant and pro-lipogenic responses in relation to impaired synthesis and accretion of long-chain polyunsaturated fatty acids in rat hepatic and extrahepatic tissues. Nutrition. 2018;45:49–58. 10.1016/j.nut.2017.07.007

102. Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci USA. 2005;102:12011–16. 10.1073/pnas.0505714102

103. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci USA. 2000;97:1444–9. 10.1073/pnas.97.4.1444

104. Askri D, Cunin V, Ouni S, Béal D, Rachidi W, Sakly M, et al. Effects of iron oxide nanoparticles (γ-Fe2O3) on liver, lung and brain proteomes following sub-acute intranasal exposure: A new toxicological assessment in rat model using iTRAQ-based quantitative proteomics. Int J Mol Sci. 2019;20:5186. 10.3390/ijms20205186

105. Ma W, Jia L, Xiong Q, Du H. Iron overload protects from obesity by ferroptosis. Foods (Basel, Switzerland). 2021;10:1787. 10.3390/foods10081787

106. Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res. 2010;49:186–99. 10.1016/j.plipres.2009.12.002

107. Gonzalez M, Mutch D. Diet regulation of long-chain PUFA synthesis: Role of macronutrients, micronutrients, and polyphenols on δ-5/δ-6 desaturases and elongases 2/5. Adv Nutr. 2021;12:980–94. 10.1093/advances/nmaa142

108. Tamura K, Makino A, Hullin-Matsuda Fo, Kobayashi T, Furihata M, Chung S, et al. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res. 2009;69:8133–40. 10.1158/0008-5472.CAN-09-0775

109. Kitazawa H, Miyamoto Y, Shimamura K, Nagumo A, Tokita S. Development of a high-density assay for long-chain fatty acyl-CoA elongases. Lipids. 2009;44:765–73. 10.1007/s11745-009-3320-8

110. Agbaga M-P, Brush Richard S, Mandal Md Nawajes A, Henry K, Elliott Michael H, Anderson Robert E. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci USA. 2008;105:12843–8. 10.1073/pnas.0802607105

111. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13:1193–202. 10.1038/nm1662

112. Faradina A, Tseng S-H, Tung T-H, Huang S-Y, Lee Y-C, Skalny AV, et al. High-dose ferric citrate supplementation attenuates omega-3 polyunsaturated fatty acid biosynthesis via downregulating delta 5 and 6 desaturases in rats with high-fat diet-induced obesity. Food Funct. 2021;12:11819–28. 10.1039/D1FO02680A

113. Pigeon C, Legrand P, Leroyer P, Bouriel M, Turlin B, Brissot P, et al Stearoyl coenzyme A desaturase 1 expression and activity are increased in the liver during iron overload. Biochim Biophys Acta Mol Basis Dis. 2001;1535:275–84. 10.1016/S0925-4439(01)00024-2

114. Rodriguez A, Hilvo M, Kytömäki L, Fleming RE, Britton RS, Bacon BR, et al. Effects of iron loading on muscle: Genome-wide mRNA expression profiling in the mouse. BMC Genomics. 2007;8:379. 10.1186/1471-2164-8-379

115. Ntambi James M, Miyazaki M, Stoehr Jonathan P, Lan H, Kendziorski Christina M, Yandell Brian S, et al. Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002;99:11482–6. 10.1073/pnas.132384699

116. Britton L, Jaskowski L, Bridle K, Santrampurwala N, Reiling J, Musgrave N, et al. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet. Physiol Rep. 2016;4:e12837. 10.14814/phy2.12837

117. Wu Y, Baylin A, Colacino JA. Iron, oxidative stress, and δ9 stearoyl-coenzymeA desaturase index (C16:1/C16:0): An analysis applying the national health and nutrition examination survey 2003–04. Curr Dev Nutr. 2017;2:1–8. 10.1093/cdn/nzx001

118. Ding H, Zhang Q, Yu X, Chen L, Wang Z, Feng J. Lipidomics reveals perturbations in the liver lipid profile of iron-overloaded mice. Metallomics. 2021;13:mfab057. 10.1093/mtomcs/mfab057

119. Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, et al. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fat Acids. 2020;153:102058. 10.1016/j.plefa.2020.102058

120. Protchenko O, Baratz E, Jadhav S, Li F, Shakoury-Elizeh M, Gavrilova O, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 2021;73:1176–93. 10.1002/hep.31328

121. de Antueno RJ, Knickle LC, Smith H, Elliot ML, Allen SJ, Nwaka S, et al. Activity of human Δ5 and Δ6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett. 2001;509:77–80. 10.1016/S0014-5793(01)03135-0

122. Nakamura MT, Nara TY. Structure, function, and dietary regulation of δ6, δ5, and δ9 desaturases. Annu Rev Nutr. 2004;24:345–76. 10.1146/annurev.nutr.24.121803.063211

123. Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem. 2009;284:27816–26. 10.1074/jbc.M109.022467

124. Lee K, Kerner J, Hoppel CL. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem. 2011;286:25655–62. 10.1074/jbc.M111.228692

125. Wu Y, Ye Q, Zheng Q, Zhang L, Zhao Y. Study of synergistic effect of free fatty acid and iron on the establishment of nonalcoholic fatty liver disease model. Zhonghua Yu Fang Yi Xue Za Zhi. 2014;48:904–8.

126. Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare J-A, et al. Adipose tissue expansion by overfeeding healthy men alters iron gene expression. J Clin Endocrinol Metab. 2019;104:688–96. 10.1210/jc.2018-01169

127. Golej DL, Askari B, Kramer F, Barnhart S, Vivekanandan-Giri A, Pennathur S, et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. J Lipid Res. 2011;52:782–93. 10.1194/jlr.M013292

128. Cooke M, Orlando U, Maloberti P, Podestá EJ, Cornejo Maciel F. Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res. 2011;52:1936–48. 10.1194/jlr.M015552

129. Wu S, Yang J, Sun G, Hu J, Zhang Q, Cai J, et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br J Pharmacol. 2021;178:3783–96. 10.1111/bph.15518

130. Wanders RJA, Ruiter JPN, Ijlst L, Waterham HR, Houten SM. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis. 2010;33:479–94. 10.1007/s10545-010-9104-8

131. Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2019;46:73–90. 10.1016/j.mito.2018.02.009

132. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system—From concept to molecular analysis. Eur J Biochem. 1997;244:1–14. 10.1111/j.1432-1033.1997.00001.x

133. Nishina S, Korenaga M, Hidaka I, Shinozaki A, Sakai A, Gondo T, et al. Hepatitis C virus protein and iron overload induce hepatic steatosis through the unfolded protein response in mice. Liver Int. 2010;30:683–92. 10.1111/j.1478-3231.2010.02210.x

134. Volani C, Paglia G, Smarason SV, Pramstaller PP, Demetz E, Pfeifhofer-Obermair C, et al. Metabolic signature of dietary iron overload in a mouse model. Cells. 2018;7:264. 10.3390/cells7120264

135. Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:8713–42. 10.3390/ijms15058713

136. Li X, Li S, Lu M, Yang G, Shen Y, Zhou X. Proteomic profiling of iron overload-induced human hepatic cells reveals activation of TLR2-mediated inflammatory response. Molecules (Basel, Switzerland). 2016;21:322. 10.3390/molecules21030322

137. Yamamoto K, Abe S, Honda A, Hashimoto J, Aizawa Y, Ishibashi S, et al. Fatty acid beta oxidation enzyme HADHA is a novel potential therapeutic target in malignant lymphoma. LabInvest. 2020;100:353–62. 10.1038/s41374-019-0318-6

138. Waterham HR, Ferdinandusse S, Wanders RJA. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta Mol Cell Res. 2016;1863:922–33. 10.1016/j.bbamcr.2015.11.015

139. Wanders RJA, Visser WF, van Roermund CWT, Kemp S, Waterham HR. The peroxisomal ABC transporter family. Pflügers Archiv Eur J Physiol. 2007;453:719–34. 10.1007/s00424-006-0142-x

140. van Roermund CWT, Visser WF, Ijlst L, Waterham HR, Wanders RJA. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811:148–52. 10.1016/j.bbalip.2010.11.010

141. Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA. Human very-long-chain acyl-CoA synthetase: Cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Comm. 1999;257:615–21. 10.1006/bbrc.1999.0510

142. Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2016;3:83. 10.3389/fcell.2015.00083

143. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochim Biophys Acta Mol Cell Res. 2006;1763:1413–26. 10.1016/j.bbamcr.2006.08.034

144. Wanders RJA, Denis SW, Dacremont G. Studies on the substrate specificity of the inducible and non-inducible acyl-CoA oxidases from rat kidney peroxisomes. J Biochem. 1993;113:577–82. 10.1093/oxfordjournals.jbchem.a124086

145. Qin Y-M, Haapalainen AM, Kilpeläinen SH, Marttila MS, Koski MK, Glumoff T, et al. Human peroxisomal multifunctional enzyme type 2: Site-directed mutagenesis studies show the importance of two protic residues for 2-enoyl-coA hydratase 2 activity. J Biol Chem. 2000;275:4965–72. 10.1074/jbc.275.7.4965

146. Moon MS, McDevitt EI, Zhu J, Stanley B, Krzeminski J, Amin S, et al. Elevated hepatic iron activates nf-e2–related factor 2–regulated pathway in a dietary iron overload mouse model. Toxicol Sci. 2012;129:74–85. 10.1093/toxsci/kfs193

147. Kim S-H, Yadav D, Kim S-J, Kim J-R, Cho K-H. High consumption of iron exacerbates hyperlipidemia, atherosclerosis, and female sterility in zebrafish via acceleration of glycation and degradation of serum lipoproteins. Nutrients. 2017;9:690. 10.3390/nu9070690

148. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20:137–55. 10.1038/s41580-018-0085-z

149. Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab. 2009;296:E1195–209. 10.1152/ajpendo.90958.2008

150. Thomas PD, Poznansky MJ. Lipid peroxidation inactivates rat liver microsomal glycerol-3-phosphate acyl transferase. Effect of iron and copper salts and carbon tetrachloride. J Biol Chem. 1990;265:2684–91. 10.1016/S0021-9258(19)39856-4

151. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: The significance of dietary cholesterol. Scand J Gastroenterol. 2009;44:471–7. 10.1080/00365520802588133

152. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37:909–16. 10.1053/jhep.2003.50132

153. Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res. 2013;52:175–91. 10.1016/j.plipres.2012.11.002

154. Trapani L Segatto M Pallottini V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic “power station”. World J Hepatol. 2012;4:184–90. 10.4254/wjh.v4.i6.184

155. Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, et al. Cholesterol biosynthesis: A mechanistic overview. Biochemistry. 2016;55:5483–506. 10.1021/acs.biochem.6b00342

156. DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 2008;18:609–21. 10.1038/cr.2008.61

157. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–30. 10.1038/343425a0

158. Bloch K. The biological synthesis of cholesterol. Science. 1965;150:19–28. 10.1126/science.150.3692.19

159. Kandutsch AA, Russell AE. Preputial gland tumor sterols: III. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 1960;235:2256–61. 10.1016/S0021-9258(18)64608-3

160. Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035–78. 10.1002/cphy.c120027

161. Padda RS, Gkouvatsos K, Guido M, Mui J, Vali H, Pantopoulos K. A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv−/− mice. Am J Physiol Gastrointest Liver Physiol. 2014;308:G251–61. 10.1152/ajpgi.00137.2014

162. Brunet S, Thibault L, Delvin E, Yotov W, Bendayan M, Levy E. Dietary iron overload and induced lipid peroxidation are associated with impaired plasma lipid transport and hepatic sterol metabolism in rats. Hepatology. 1999;29:1809–17. 10.1002/hep.510290612

163. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74. 10.1146/annurev.biochem.72.121801.161712

164. Chiang JYL. Bile acids: Regulation of synthesis. J Lipid Res. 2009;50:1955–66. 10.1194/jlr.R900010-JLR200

165. DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 2018 May;43(5):358–68. 10.1016/j.tibs.2018.01.005

166. McMullen PD, Bhattacharya S, Woods CG, Sun B, Yarborough K, Ross SM, et al. A map of the PPARα transcription regulatory network for primary human hepatocytes. Chem Biol Interact. 2014 Feb 25;209:14–24. 10.1016/j.cbi.2013.11.006

167. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015 Mar;62(3):720–33. 10.1016/j.jhep.2014.10.039

168. Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L, Gatti S, et al. Dietary iron overload induces visceral adipose tissue insulin resistance. Am J Pathol. 2013;182:2254–63. 10.1016/j.ajpath.2013.02.019

169. Petrak J, Myslivcova D, Man P, Cmejla R, Cmejlova J, Vyoral D, et al. Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle. Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1490–8. 10.1152/ajpgi.00455.2006

170. Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density lipoprotein. Biocheml Soc Trans. 2004;32:59–64. 10.1042/bst0320059

171. Zhou L, Li C, Gao L, Wang A. High-density lipoprotein synthesis and metabolism. Mol Med Rep 2015;12:4015–21. 10.3892/mmr.2015.3930

172. Alexander CA, Hamilton RL, Havel RJ. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976;69:241–63. 10.1083/jcb.69.2.241

173. Wetterau JR, Lin MCM, Jamil H. Microsomal triglyceride transfer protein. Biochimica et Biophysica Acta (BBA) Lipids Lipid Metab. 1997;1345:136–50. 10.1016/S0005-2760(96)00168-3

174. Hevi S, Chuck SL. Ferritins can regulate the secretion of apolipoprotein B. J Biol Chem. 2003;278:31924–29. 10.1074/jbc.M303081200

175. Mancone C, Montaldo C, Santangelo L, Di Giacomo C, Costa V, Amicone L, et al. Ferritin heavy chain is the host factor responsible for HCV-induced inhibition of apoB-100 production and is required for efficient viral infection. J Proteome Res. 2012;11:2786–97. 10.1021/pr201128s

176. Barisani D, Meneveri R, Ginelli E, Cassani C, Conte D. Iron overload and gene expression in HepG2 cells: Analysis by differential display. FEBS Lett. 2000;469:208–12. 10.1016/S0014-5793(00)01280-1

177. Ahmed U, Redgrave T, Oates P. Body iron stores increase hepatic and serum lipid in rats fed a standard western diet. GSTF J Adv Med Res. 2014;1:2. 10.5176/2345-7201_1.2.18

178. Martínez-Soto JM, Candia-Plata MdC, López-Soto LF, Soto-Guzmán JA, Camacho-Villa AY, Álvarez-Hernández G, et al. Increased serum ferritin is associated with oxidized low-density lipoprotein in pre-diabetes patients: A pilot study. Heliyon. 2021;7:e06720. 10.1016/j.heliyon.2021.e06720

179. Wu W, Yuan J, Shen Y, Yu Y, Chen X, Zhang L, et al. Iron overload is related to elevated blood glucose levels in obese children and aggravates high glucose-induced endothelial cell dysfunction in vitro. BMJ Open Diab Res Care. 2020;8:e001426. 10.1136/bmjdrc-2020-001426

180. VerHague MA, Cheng D, Weinberg RB, Shelness GS. Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler Thromb Vasc Biol. 2013;33:2501–8. 10.1161/atvb.33.suppl_1.A4

181. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023 Jan 6;51(D1):D587–92. 10.1093/nar/gkac963

182. Mazein A, Watterson S, Hsieh WY, Griffiths WJ, Ghazal P. A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol. 2013 Jul 1;86(1):56–66. 10.1016/j.bcp.2013.03.021