Reprogrammed Cell‐based Therapy for Liver Disease: From Labto Clinic

Main Article Content

Amir Mehdizadeh
Masoud Darabi

Keywords

cell therapy, gene editing, liver transplantation, regenerative medicine, stem cells

Abstract

A large number of patients are affected by liver dysfunction worldwide. Liver transplantation is the only efficient treatment in a variety of enduring liver disorders including inherent and end-stage liver diseases. The generation of human functional hepato-cytes in high quantities for liver cell therapy is an important goal for ongoing therapies in regenerative medicine. Reprogrammed cells are considered as a promising and unlimited source of hepatocytes, mainly because of their expected lack of immunogenicity and minimized ethical concerns in clinical applications. Despite gained advances in the reprogramming of somatic cells to functional hepatocytes in vitro, production of primary adult hepatocytes that can proliferate in vivo still remains inaccessible. As part of efforts toward translation of cell reprogramming science into clinical practice, more careful cell selection strategies should be integrated into improvement of dedifferentiation and redifferentiation protocols, especially in precision medicine where gene correction is needed. Furthermore, advances in cellular reprogramming highlight the need for developing and evaluating novel standards addressing clinical research interests in this field.

Downloads

Download data is not yet available.
Abstract 1497 | PDF Downloads 230 HTML Downloads 826 XML Downloads 60

References

1. Yu Y, Fisher JE, Lillegard JB, Rodysill B, Amiot B, Nyberg SL. Cell therapies for liver diseases. Liver Transpl. 2012;18(1):9–21. http://dx.doi.org/10.1002/lt.22467
2. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24(6):1446–51. http://dx.doi.org/10.1002/hep.510240625
3. Chen Y, Li J, Liu X, Zhao W, Wang Y, Wang X. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90% hepatectomized mice. Transplant Proc. 2010;42:1907–14. http://dx.doi.org/10.1016/j.transproceed.2010.01.061
4. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322(5907):1490–4. http://dx.doi.org/10.1126/science.1161431
5. Li H, Zhang B, Lu Y, Jorgensen M, Petersen B, Song S. Adipose tissue-derived mesenchymal stem cell-based liver gene delivery. J Hepatol. 2011;54(5):930–8. http://dx.doi.org/10.1016/j.jhep.2010.07.051
6. Piscaglia AC, Campanale M, Gasbarrini A, Gasbarrini G. Stem cell-based therapies for liver diseases: State of the art and new perspectives. Stem Cells Int. 2010;2010:259461. http://dx.doi.org/10.4061/2010/259461
7. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte–like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305. http://dx.doi.org/10.1002/hep.23354
8. Ramesh T, Lee S-H, Lee C-S, Kwon Y-W, Cho H-J. Somatic cell dedifferentiation/reprogramming for regenerative medicine. Int J Stem Cells. 2009;2(1):18. http://dx.doi.org/10.15283/ijsc.2009.2.1.18
9. Brambrink T, Hochedlinger K, Bell G, Jaenisch R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A. 2006;103(4):933–8. http://dx.doi.org/10.1073/pnas.0510485103
10. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309(5739):1369–73. http://dx.doi.org/10.1126/science.1116447
11. Håkelien A-M, Landsverk HB, Robl JM, Skålhegg BS, Collas P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol. 2002;20(5):460–6. http://dx.doi.org/10.1038/nbt0502-460
12. Taranger CK, Noer A, Sørensen AL, Håkelien A-M, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell. 2005;16(12):5719–35. http://dx.doi.org/10.1091/mbc.E05-06-0572
13. Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ. Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res. 2008;314(14):2634–42. http://dx.doi.org/10.1016/j.yexcr.2008.05.009
14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. http://dx.doi.org/10.1016/j.cell.2006.07.024
15. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461(7264):649–3. http://dx.doi.org/10.1038/nature08436 PubMed PMID: 19718018.
16. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481–4. http://dx.doi.org/10.1038/nature12271
17. Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, et al. The use of induced pluripotent stem cells for the study and treatment of liver diseases. Curr Protoc Toxicol. 2016;67:14.3.1–13.27. http://dx.doi.org/10.1002/0471140856.tx1413s67 PubMed PMID: 26828329; PubMed Central PMCID: PMCPMC4795152.
18. Goldman O, Gouon-Evans V. Human pluripotent stem cells: Myths and future realities for liver cell therapy. Cell Stem Cell. 2016;18(6):703–6. http://dx.doi.org/10.1016/j.stem.2016.05.019. PubMed PMID: 27257759.
19. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision medicine: Genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep. 2016;6:19969. http://dx.doi.org/10.1038/srep19969
20. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. http://dx.doi.org/10.1016/j.cell.2007.11.019
21. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. http://dx.doi.org/10.1126/science.1225829
22. Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell. 2015;6(8):562–74. http://dx.doi.org/10.1007/s13238-015-0180-2
23. Han S, Bourdon A, Hamou W, Dziedzic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. J Stem Cell Res Ther. 2012;10(8):1–7. http://dx.doi.org/10.4172/2157-7633.s10-008
24. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45(5):1229–39. http://dx.doi.org/10.1002/hep.21582
25. Liu H, Ye Z, Kim Y, Sharkis S, Jang YY. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology. 2010;51(5):1810–9. http://dx.doi.org/10.1002/hep.23626
26. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26(5):1117–27. http://dx.doi.org/10.1634/stemcells.2007-1102
27. Liu H, Kim Y, Sharkis S, Marchionni L, Jang Y-Y. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011;3(82):82ra39. http://dx.doi.org/10.1126/scitranslmed.3002376
28. Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A. 2008;105(34):12301–6. http://dx.doi.org/10.1073/pnas.0806522105
29. Morrison GM, Oikonomopoulou I, Migueles RP, Soneji S, Livigni A, Enver T, et al. Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell. 2008;3(4):402–15. http://dx.doi.org/10.1016/j.stem.2008.07.021
30. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm. Nat Biotechnol. 2006;24(11):1402–11. http://dx.doi.org/10.1038/nbt1258
31. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373(6516):699–702. http://dx.doi.org/10.1038/373699a0
32. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51(5):1754–65. http://dx.doi.org/10.1002/hep.23506
33. Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J. 1999;18(8):2127–36. http://dx.doi.org/10.1093/emboj/18.8.2127
34. Rahimi Y, Mehdizadeh A, Nozad Charoudeh H, Nouri M, Valaei K, Fayezi S, et al. Hepatocyte differentiation of human induced pluripotent stem cells is modulated by stearoyl-CoA desaturase 1 activity. Dev Growth Differ. 2015;57(9):667–74. http://dx.doi.org/10.1111/dgd.12255 PubMed PMID: 26676854.
35. Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4? transduction. Mol Ther. 2012;20(1):127–37. http://dx.doi.org/10.1038/mt.2011.234
36. Takayama K, Inamura M, Kawabata K, Tashiro K, Katayama K, Sakurai F, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One. 2011;6(7):e21780. http://dx.doi.org/10.1371/journal.pone.0021780
37. Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012;2012:184154. http://dx.doi.org/10.1155/2012/184154
38. Ren M, Yan L, Shang CZ, Cao J, Lu LH, Min J, et al. Effects of sodium butyrate on the differentiation of pancreatic and hepatic progenitor cells from mouse embryonic stem cells. J Cell Biochem. 2010;109(1):236–44.
39. Zhou QJ, Xiang LX, Shao JZ, Hu RZ, Lu YL, Yao H, et al. In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cellular Biochem. 2007;100(1):29–42. http://dx.doi.org/10.1002/jcb.20970
40. Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports. 2015;4(5):939–52. http://dx.doi.org/10.1016/j.stemcr.2015.04.001
41. Zhu S, Rezvani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508(7494):93–7. http://dx.doi.org/10.1038/nature13020
42. Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol. 2013;9(8):514–20. http://dx.doi.org/10.1038/nchembio.1270
43. Wertheim JA, Baptista PM, Soto-Gutierrez A. Cellular therapy and bioartificial approaches to liver replacement. Curr Opin Organ Transplant. 2012;17(3):235. http://dx.doi.org/10.1097/MOT.0b013e3283534ec9
44. Bao J, Shi Y, Sun H, Yin X, Yang R, Li L, et al. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 2011;20(5):753–66. http://dx.doi.org/10.3727/096368910X536572 PubMed PMID: 21054928.
45. Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol. 2015;62(1): S157–69. http://dx.doi.org/10.1016/j.jhep.2015.02.040
46. Gupta S, Rajvanshi P, Sokhi R, Slehria S, Yam A, Kerr A, et al. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology. 1999;29(2):509–19. http://dx.doi.org/10.1002/hep.510290213
47. Gupta S, Lee CD, Vemuru RP, Bhargava KK. 111Indium labeling of hepatocytes for analysis of short-term biodistribution of transplanted cells. Hepatology. 1994;19(3):750–7. http://dx.doi.org/10.1002/hep.510290213
48. Guo D, Fu T, Nelson JA, Superina RA, Soriano HE. Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride1. Transplantation. 2002;73(11):1818–24. http://dx.doi.org/10.1097/00007890-200206150-00020
49. Herrero A, Prigent J, Lombard C, Rosseels V, Daujat-Chavanieu M, Breckpot K, et al. Adult-derived human liver stem/progenitor cells infused 3 days post-surgery improve liver regeneration in a mouse model of extended hepatectomy. Cell Transplant. 2016; ahead of print. http://dx.doi.org/10.3727/096368916X692960
50. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200. http://dx.doi.org/10.1038/nrm.2016.10
51. Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature. 2016;535(7613):476–7. http://dx.doi.org/10.1038/nature.2016.20302 PubMed PMID: 27466105.
52. Deng P, Torrest A, Pollock K, Dahlenburg H, Annett G, Nolta JA, et al. Clinical trial perspective for adult and juvenile Huntington’s disease using genetically-engineered mesenchymal stem cells. Neural Regen Res. 2016;11(5):702–5. http://dx.doi.org/10.4103/1673-5374.182682 PubMed PMID: 27335539; PubMed Central PMCID: PMCPMC4904446.
53. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338(20):1422–7. http://dx.doi.org/10.1056/NEJM199805143382004
54. Yu Y, Wang X, Nyberg SL. Application of induced pluripotent stem cells in liver diseases. Cell Med. 2014;7(1):1–13. http://dx.doi.org/10.3727/215517914X680056
55. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene correction of ?1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478(7369):391–4. http://dx.doi.org/10.1038/nature10424
56. Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20(16):3176–87. http://dx.doi.org/10.1093/hmg/ddr223
57. Chun YS, Chaudhari P, Jang Y-Y. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. Int J Biol Sci. 2010;6(7):796–805. http://dx.doi.org/10.7150/ijbs.6.796
58. Isobe K, Cheng Z, Ito S, Nishio N. Aging in the mouse and perspectives of rejuvenation through induced pluripotent stem cells (iPSCs). Results Probl Cell Differ. 2012;55:413–27. http://dx.doi.org/10.1007/978-3-642-30406-4_21
59. Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, et al. Induced pluripotent stem cell–derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120(9):3120–6. http://dx.doi.org/10.1172/JCI43267
60. Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep. 2013;9(4):493–504. http://dx.doi.org/10.1007/s12015-011-9330-y
61. Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang Y-Y. Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle. 2011;10(15):2423–7. http://dx.doi.org/10.4161/cc.10.15.16869
62. Chen Z, Qi L, Zeng R, Li HY, Dai LJ. Stem cells and hepatic cirrhosis. Panminerva Med. 2010;52(2):149–65.
63. Moriguchi H, Chung RT, Sato C. An identification of novel therapy for human hepatocellular carcinoma by using human induced pluripotent stem cells. Hepatology. 2010;51(3):1090–1.
64. Lei F, Zhao B, Haque R, Xiong X, Budgeon L, Christensen ND, et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res. 2011;71(14):4742–7. http://dx.doi.org/10.1158/0008-5472.CAN-11-0359
65. Medvedev SP, Shevchenko AI, Zakian SM. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Naturae. 2010;2(2):18–28.
66. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. http://dx.doi.org/10.1038/nature05934
67. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A. 2009;106(1):157–62. http://dx.doi.org/10.1073/pnas.0811426106
68. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121(3):465–77. http://dx.doi.org/10.1016/j.cell.2005.02.018
69. Park ET, Gum JR, Kakar S, Kwon SW, Deng G, Kim YS. Aberrant expression of SOX2 upregulates MUC5AC gastric foveolar mucin in mucinous cancers of the colorectum and related lesions. Int J Cancer. 2008;122(6):1253–60. http://dx.doi.org/10.1002/ijc.23225
70. McConnell BB, Ghaleb AM, Nandan MO, Yang VW. The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays. 2007;29(6):549–57. http://dx.doi.org/10.1002/bies.20581
71. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53. http://dx.doi.org/10.1126/science.1164270
72. Duinsbergen D, Salvatori D, Eriksson M, Mikkers H. Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci. 2009;1176(1):197–204. http://dx.doi.org/10.1111/j.1749-6632.2009.04563.x
73. Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120(9):3127–36. http://dx.doi.org/10.1172/JCI43122
74. Hashemi Goradel N, Darabi M, Shamsasenjan K, Ejtehadifar M, Zahedi S. Methods of liver stem cell therapy in rodents as models of human liver regeneration in hepatic failure. Adv Pharm Bull. 2015;5(3):293–8. http://dx.doi.org/10.5681/apb.2015.041 PubMed PMID: 26504749; PubMed Central PMCID: PMCPMC4616895.
75. Puppi J, Strom SC, Hughes RD, Bansal S, Castell JV, Dagher I, et al. Improving the techniques for human hepatocyte transplantation: Report from a consensus meeting in London. Cell Transplant. 2012;21(1):1–10. http://dx.doi.org/10.3727/096368911X566208
76. Nagata H, Ito M, Shirota C, Edge A, McCowan TC, Fox IJ. Route of hepatocyte delivery affects hepatocyte engraftment in the spleen1. Transplantation. 2003;76(4):732–4. http://dx.doi.org/10.1097/01.TP.0000081560.16039.67
77. Kirk AD, Knechtle SJ, Larsen CP, Madsen JC, Pearson TC, Webber SA. Textbook of organ transplantation set. Hoboken, NJ: John Wiley & Sons; 2014.
78. Hashemi Goradel N, Eghbal MA, Darabi M, Roshangar L, Asadi M, Zarghami N, et al. Improvement of liver cell therapy in rats by dietary stearic acid. Iran Biomed J. 2016;20(4):217–22.PubMed PMID: 27090202; PubMed Central PMCID: PMCPMC4983676.
79. Liu T, Wang Y, Tai G, Zhang S. Could co-transplantation of iPS cells derived hepatocytes and MSCs cure end-stage liver disease? Cell Biol Int. 2009;33(11):1180–3. http://dx.doi.org/10.1016/j.cellbi.2009.08.007

Most read articles by the same author(s)